Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr C Struct Chem ; 79(Pt 6): 217-226, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140890

RESUMO

Two crystal structures of chalcones, or 1,3-diarylprop-2-en-1-ones, are presented; both contain a p-methyl substitution on the 3-Ring, but differ with respect to the m-substitution on the 1-Ring. Their systematic names are (2E)-3-(4-methylphenyl)-1-(3-{[(4-methylphenyl)methylidene]amino}phenyl)prop-2-en-1-one (C24H21NO) and N-{3-[(2E)-3-(4-methylphenyl)prop-2-enoyl]phenyl}acetamide (C18H17NO2), which are abbreviated as 3'-(N=CHC6H4-p-CH3)-4-methylchalcone and 3'-(NHCOCH3)-4-methylchalcone, respectively. Both chalcones represent the first reported acetamide-substituted and imino-substituted chalcone crystal structures, adding to the robust library of chalcone structures within the Cambridge Structural Database. The crystal structure of 3'-(N=CHC6H4-p-CH3)-4-methylchalcone exhibits close contacts between the enone O atom and the substituent arene ring, in addition to C...C interactions between the substituent arene rings. The structure of 3'-(NHCOCH3)-4-methylchalcone exhibits a unique interaction between the enone O atom and the 1-Ring substituent, contributing to its antiparallel crystal packing. In addition, both structures exhibit π-stacking, which occurs between the 1-Ring and R-Ring for 3'-(N=CHC6H4-p-CH3)-4-methylchalcone, and between the 1-Ring and 3-Ring for 3'-(NHCOCH3)-4-methylchalcone.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 3): 347-356, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34096516

RESUMO

The structures of three iodochalcones, functionalized with fluorine or a nitro group, have been investigated to explore the impact of different molecular electrostatic distributions on the halogen bonding within each crystal structure. The strongly withdrawing nitro group presented a switch of the halogen bond from a lateral to a linear motif. Surprisingly, this appears to be influenced by a net positive shift in charge distribution around the lateral edges of the σ-hole, making the lateral I...I bonding motif less preferable. A channel of amphoteric I...I type II halogen bonds is observed for a chalcone molecule, which was not previously reported in chalcones, alongside an example of the common synthon involving extended linear chains of I...O2N donor-acceptor halogen bonds. This work shows that halogenated chalcones may be an interesting target for developing halogen bonding as a significant tool within crystal engineering, a thus far underexplored area for this common structural motif.

3.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 10): 1599-1604, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33117572

RESUMO

The structure of three functionalized chalcones (1,3-di-aryl-prop-2-en-1-ones), containing combinations of nitro and di-methyl-amino functional groups, are presented, namely, 1-[4-(di-methyl-amino)-phen-yl]-3-(3-nitro-phen-yl)prop-2-en-1-one, C17H16N2O3, Gp8m, 3-[3-(di-methyl-amino)-phen-yl]-1-(3-nitro-phen-yl)prop-2-en-1-one, C17H16N2O3, Hm7m and 1-(3-nitro-phen-yl)-3-phenyl-prop-2-en-1-one, C15H11NO3, Hm1-. Each of the mol-ecules contains bonding motifs seen in previously solved crystal structures of functionalized chalcones, adding to the large dataset available for these small organic mol-ecules. The structures of all three of the title compounds contain similar bonding motifs, resulting in two-dimensional planes of mol-ecules formed via C-H⋯O hydrogen-bonding inter-actions involving the nitro- and ketone groups. The structure of Hm1- is very similar to the crystal structure of a previously solved isomer [Jing (2009 ▸). Acta Cryst. E65, o2510].

4.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 9): 1496-1502, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939307

RESUMO

Two crystal structures of chalcones, or 1,3-di-aryl-prop-2-en-1-ones, are presented; both contain a methyl substitution on the 3-Ring, but differ on the 1-Ring, bromo versus cyano. The compounds are 3'-bromo-4-methyl-chalcone [systematic name: 1-(2-bromo-phen-yl)-3-(4-methyl-phen-yl)prop-2-en-1-one], C16H13BrO, and 3'-cyano-4-methyl-chalcone {systematic name: 2-[3-(4-methyl-phen-yl)prop-2-eno-yl]benzo-nitrile}, C17H13NO. Both chalcones meaningfully add to the large dataset of chalcone structures. The crystal structure of 3'-cyano-4-methyl-chalcone exhibits close contacts with the cyano nitro-gen that do not appear in previously reported disubstituted cyano-chalcones, namely inter-actions between the cyano nitro-gen atom and a ring hydrogen atom as well as a methyl hydrogen atom. The structure of 3'-bromo-4-methyl-chalcone exhibits a type I halogen bond, similar to that found in a previously reported structure for 4-bromo-3'-methyl-chalcone.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 1): 13-17, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831235

RESUMO

Heterocyclic chalcones are a recently explored subgroup of chalcones that have sparked interest due to their significant antibacterial and antifungal capabilities. Herein, the structure and solubility of two such compounds, (E)-1-(1H-pyrrol-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one and (E)-3-phenyl-1-(1H-pyrrol-2-yl)prop-2-en-1-one, are assessed. Single crystals of (E)-1-(1H-pyrrol-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one were grown, allowing structural comparisons between the heterocyclic chalcones and (2E)-1,3-diphenylprop-2-en-1-one, trivially known as trans-chalcone. The two heterocyclic chalcones were found to be less soluble in all solvents tested and to have higher melting points than trans-chalcone, probably due to their stronger intermolecular interactions arising from the functionalized rings. Interestingly, however, it was found that the addition of the thiophene ring in (E)-1-(1H-pyrrol-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one increased both the melting point and solubility of the sample compared with (E)-3-phenyl-1-(1H-pyrrol-2-yl)prop-2-en-1-one. This observation may be key for the future crystal engineering of heterocyclic chalcones for pharmaceutical applications.

6.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 1): 72-76, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31921455

RESUMO

The title compound, C15H10I2O, is a halogenated chalcone formed from two iodine substituted rings, one para-substituted and the other meta-substituted, linked through a prop-2-en-1-one spacer. In the mol-ecule, the mean planes of the 3-iodo-phenyl and the 4-iodo-phenyl groups are twisted by 46.51 (15)°. The calculated electrostatic potential surfaces show the presence of σ-holes on both substituted iodines. In the crystal, the mol-ecules are linked through type II halogen bonds, forming a sheet structure parallel to the bc plane. Between the sheets, weak inter-molecular C-H⋯π inter-actions are observed. Hirshfeld surface analysis showed that the most significant contacts in the structure are C⋯H/H⋯C (31.9%), followed by H⋯H (21.4%), I⋯H/H⋯I (18.4%). I⋯I (14.5%) and O⋯H/H⋯O (8.1%).

7.
J Am Chem Soc ; 132(8): 2622-32, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20136125

RESUMO

We demonstrate the electrochemical capture of CdSe semiconductor nanocrystals (NCs), with thiophene-terminated carboxylic acid capping ligands, at the surfaces of electrodeposited poly(thiophene) films (i) poly((diethyl)propylenedixoythiophene), P(Et)(2)ProDOT; (ii) poly(propylenedioxythiophene), PProDOT; and (iii) poly(ethylenedioxythiophene), PEDOT, coupled with the exploration of their photoelectrochemical properties. Host polymer films were created using a kinetically controlled electrodeposition protocol on activated indium-tin oxide electrodes (ITO), producing conformal films that facilitate high rates of electron transfer. ProDOT-terminated, ligand-capped CdSe-NCs were captured at the outer surface of the host polymer films using a unique pulse-potential step electrodeposition protocol, providing for nearly close-packed monolayers of the NCs at the host polymer/solution interface. These polymer-confined CdSe NCs were used as sensitizers in the photoelectrochemical reduction of methyl viologen (MV(+2)). High internal quantum efficiencies (IQEs) are estimated for photoelectrochemical sensitized MV(+2) reduction using CdSe NCs ranging from 3.1 to 7.0 nm diameters. Cathodic photocurrent at high MV(+2) concentrations are limited by the rate of hole-capture by the host polymer from photoexcited NCs. The rate of this hole-capture process is determined by (a) the onset potential for reductive dedoping of the host polymer film; (b) the concentration ratio of neutral to oxidized forms of the host polymer ([P(n)]/[P(ox)]); and (c) the NC diameter, which controls its valence band energy, E(VB). These relationships are consistent with control of photoinduced electron transfer by Marcus-like excess free energy relationships. Our electrochemical assembly methods provide an enabling route to the capture of functional NCs in conducting polymer hosts in both photoelectrochemical and photovoltaic energy conversion systems.

8.
Chem Commun (Camb) ; (22): 3222-4, 2009 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-19587920

RESUMO

Quinacridone-cored dendrimers with photocrosslinkable cinnamate moieties on the periphery can be patterned down to 5 micron features while retaining luminescence.

9.
Langmuir ; 24(19): 11067-75, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18759470

RESUMO

G-protein-coupled receptors (GPCRs) play key roles in cellular signal transduction and many are pharmacologically important targets for drug discovery. GPCRs can be reconstituted in planar supported lipid bilayers (PSLBs) with retention of activity, which has led to development of GPCR-based biosensors and biochips. However, PSLBs composed of natural lipids lack the high stability desired for many technological applications. One strategy is to use synthetic lipid monomers that can be polymerized to form robust bilayers. A key question is how lipid polymerization affects GPCR structure and activity. Here we have investigated the photochemical activity of bovine rhodopsin (Rho), a model GPCR, reconstituted into PSLBs composed of lipids having one or two polymerizable dienoyl moieties located in different regions of the acyl chains. Plasmon waveguide resonance spectroscopy was used to compare the degree of Rho photoactivation in fluid and poly(lipid) PSLBs. The position of the dienoyl moiety was found to have a significant effect: polymerization near the glycerol backbone significantly attenuates Rho activity whereas polymerization near the acyl chain termini does not. Differences in cross-link density near the acyl chain termini also do not affect Rho activity. In unpolymerized PSLBs, an equimolar mixture of phosphatidylethanolamine and phosphatidylcholine (PC) lipids enhances activity relative to pure PC; however after polymerization, the enhancement is eliminated which is attributed to stabilization of the membrane lamellar phase. These results should provide guidance for the design of robust lipid bilayers functionalized with transmembrane proteins for use in membrane-based biochips and biosensors.


Assuntos
Bicamadas Lipídicas/química , Polímeros/química , Rodopsina/química , Animais , Bovinos , Cor , Estrutura Molecular , Octoxinol , Fotoquímica
10.
Langmuir ; 24(9): 4901-6, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18393486

RESUMO

Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Rodopsina/química , Animais , Carbono/química , Bovinos , Espectrometria de Massas , Oxirredução , Polímeros/química , Espectrofotometria , Propriedades de Superfície , Vácuo
11.
Langmuir ; 23(22): 11326-33, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17892310

RESUMO

The utilization of photopolymerized phospholipids for the preparation of spatially defined, chemically functionalized, micron-sized domains within enclosed fluidic channels was recently reported (Ross, E. E.; et al. J. Am. Chem. Soc. 2005, 127, 16756-7). Fabrication of the phospholipid patterns is achieved via self-assembly of photoreactive phospholipid membranes that are subsequently cross-linked via UV-irradiation through a photomask. In this work, we have characterized the chemical and physical stability of the self-assembled, chemically functionalized, cross-linked phospholipid patterns and extended this approach to the preparation of cross-linked phospholipid patterns with multiple chemical functionalities. Poly(bis-SorbPC) patterns were found to withstand a number of chemical and physical challenges, including drying/rehydration, solvent or surfactant rinse, and extended storage without compromising the size or morphology of the cross-linked phospholipid patterns. Nonspecific adsorption of proteins was found to be markedly reduced in the presence of UV-photopolymerized poly(bis-SorbPC) compared to bare silica capillaries. The resulting barcode-like patterns were used to prepare protein-functionalized domains via covalent attachment of fluorescent proteins and active enzymes to chemically functionalized lipid headgroups. We also demonstrate multiple component polymer lipid patterns with adjacent chemically functionalized polymer lipid regions. The unique combination of stability, biocompatibility, reduced nonspecific protein adsorption, and the availability of numerous chemically functionalized lipid headgroups suggests the utility of this approach for preparing a widely applicable platform for multicomponent, high-throughput chemical sensing and screening applications.


Assuntos
Membranas Artificiais , Fosfolipídeos/química , Dióxido de Silício/química , Adsorção , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas , Bicamadas Lipídicas/síntese química , Bicamadas Lipídicas/química , Polímeros/síntese química , Polímeros/química , Proteínas/química
13.
Langmuir ; 22(23): 9507-11, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17073472

RESUMO

Chemically stabilized, porous phospholipid nanoshells (PPNs) were prepared via copolymerization of reactive monomers with unilamellar bis-Sorbyl phosphatidylcholine vesicles. The resulting PPN vesicular assemblies possess a highly porous membrane structure that allows passage of small molecules, which can react with encapsulated proteins and reporters. The unique combination of membrane stability and porosity will prove useful for preparing nanometer-sized sensor, container, and reactor platforms stable in harsh chemical and biological environments.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfolipídeos/química , Genes Reporter/genética , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Porosidade
14.
Chem Commun (Camb) ; (4): 444-6, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15654364

RESUMO

The first incorporation of quinacridone, a technologically important organic electroluminescent emitter, into dendrimers increases solubility, decreases aggregation, retards heterogeneous electron transfer, and enhances luminescence in condensed phases (powders and thin films).


Assuntos
Dendrímeros/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Luminescência , Eletroquímica , Espectroscopia de Ressonância Magnética , Teste de Materiais , Fotoquímica , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...