Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118696, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549639

RESUMO

Invasive alien species have widespread impacts on native biodiversity and ecosystem services. Since the number of introductions worldwide is continuously rising, it is essential to prevent the entry, establishment and spread of new alien species through a systematic examination of future potential threats. Applying a three-step horizon scanning consensus method, we evaluated non-established alien species that could potentially arrive, establish and cause major ecological impact in Spain within the next 10 years. Overall, we identified 47 species with a very high risk (e.g. Oreochromis niloticus, Popillia japonica, Hemidactylus frenatus, Crassula helmsii or Halophila stipulacea), 61 with high risk, 93 with moderate risk, and 732 species with low risk. Many of the species categorized as very high or high risk to Spanish biodiversity are either already present in Europe and neighbouring countries or have a long invasive history elsewhere. This study provides an updated list of potential invasive alien species useful for prioritizing efforts and resources against their introduction. Compared to previous horizon scanning exercises in Spain, the current study screens potential invaders from a wider range of terrestrial, freshwater, and marine organisms, and can serve as a basis for more comprehensive risk analyses to improve management and increase the efficiency of the early warning and rapid response framework for invasive alien species. We also stress the usefulness of measuring agreement and consistency as two different properties of the reliability of expert scores, in order to more easily elaborate consensus ranked lists of potential invasive alien species.


Assuntos
Ecossistema , Espécies Introduzidas , Espanha , Reprodutibilidade dos Testes , Biodiversidade
2.
Insects ; 13(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055942

RESUMO

Chelonus inanitus (L.) is an egg-larval parasitoid of noctuids Spodoptera exigua (Hübner) and S. littoralis (Boisduval), whose mass rearing or real potential has not been targeted yet. To improve the rearing in the factitious host Ephestia kuehniella Zeller, we investigated the influence of host age and number of females parasitizing simultaneously on the overall rearing success, the influence of host age on the life cycle, and the influence of host species on the parasitoid body size. The proportion of emerging C. inanitus was higher from young host eggs, but more females emerged from mature eggs. Under high parasitoid competition, we observed a reduction in non-parasitized hosts without reducing parasitoid emergence. The parasitoid life cycle was longer in females, but the mismatch between sexes was smaller in mature eggs. The parasitoid size was smaller in the factitious host than in the natural hosts. Under semi-field conditions, we investigated the competition among parasitoid females on the overall parasitism success. The reproductive parasitism was more successful in S. exigua than in S. littoralis, and the maximum emergence was reached with three and four females, respectively. The control of S. littoralis may be attributed to the high developmental mortality, a non-reproductive parasitism that is often underestimated.

3.
Virus Res ; 297: 198356, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667624

RESUMO

Cauliflower mosaic virus (CaMV) is transmitted by aphids using the non-circulative transmission mode: when the insects feed on infected leaves, virus particles from infected cells attach rapidly to their stylets and are transmitted to a new host when the aphids change plants. Mandatory for CaMV transmission, the viral helper protein P2 mediates as a molecular linker binding of the virus particles to the aphid stylets. P2 is available in infected plant cells in a viral inclusion that is specialized for transmission and named the transmission body (TB). When puncturing an infected leaf cell, the aphid triggers an ultra-rapid viral response, necessary for virus acquisition and called transmission activation: The TB disrupts and P2 is redistributed onto cortical microtubules, together with virus particles that are simultaneously set free from virus factories and join P2 on the microtubules to form the so-called mixed networks (MNs). The MNs are the predominant structure from which CaMV is acquired by aphids. However, the P2 domains involved in microtubule interaction are not known. To identify P2 regions involved in its functions, we generated a set of P2 mutants by alanine scanning and analyzed them in the viral context for their capacity to form a TB, to interact with microtubules and to transmit CaMV. Our results show that contrary to the previously characterized P2-P2 and P2-virion binding sites in its C-terminus, the microtubule binding site is contained in the N-terminal half of P2. Further, this region is important for TB formation since some P2 mutant proteins did not accumulate in TBs but were retained in the viral factories where P2 is translated. Taken together, the N-terminus of P2 is not only involved in vector interaction as previously reported, but also in interaction with microtubules and in formation of TBs.


Assuntos
Afídeos , Caulimovirus , Animais , Caulimovirus/genética , Caulimovirus/metabolismo , Microtúbulos , Doenças das Plantas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/fisiologia
4.
Insects ; 11(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443780

RESUMO

The joint use of baculoviruses and synthetic insecticides for integrated pest management requires the study of the additive, synergistic or antagonistic effects among them on pest mortality. Droplet bioassays were conducted with Autographa californica multiple nucleopolyhedrovirus (AcMNPV), Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) and seven insecticides (azadirachtin, Bacillus thuringiensis, cyantraniliprole, emamectin, metaflumizone, methoxyfenozide and spinetoram) on Spodoptera exigua and Spodoptera littoralis. The lethal concentrations LC50 and LC95 were calculated through probit regressions. Then, the sequential feeding of insecticides and nucleopolyhedroviruses was studied. Larvae were provided with the LC50 of one insecticide, followed by the LC50 of one nucleopolyhedrovirus 24 h later. The inverse order was also conducted. The insecticide LC50 and LC95 were higher for S. littoralis than for S. exigua. AcMNPV showed greater toxicity on S. exigua than SpliNPV on S. littoralis. Emamectin showed synergy with AcMNPV when the chemical was applied first, and metaflumizone and AcMNPV were synergistic regardless of the order of application, both from the first day of evaluation. SpliNPV was synergistic with azadirachtin and emamectin when it was applied first, but synergy was reached after 12-13 days. Excellent control is possible with the LC50 of azadirachtin, emamectin and metaflumizone in combination with nucleopolyhedroviruses, and merits further study as a means of controlling lepidopteran pests.

5.
Insect Sci ; 27(5): 1111-1124, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31475776

RESUMO

Successful integrated pest management in protected crops implies an evaluation of the compatibility of pesticides and natural enemies (NE), as control strategies that only rely on one tactic can fail when pest populations exceed NE activity or pests become resistant to pesticides. Nowadays in Almería (Spain), growers release NE prior to transplanting or early in the crop cycle to favor their settlement before pest arrival because this improves biocontrol efficacy, although it extends pesticide exposure periods. The purpose of this research was to evaluate the compatibility of two applications of pesticides with key NE in 2-year trials inside tomato and sweet pepper commercial greenhouses: Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), Orius laevigatus (Say) (Hemiptera: Anthocoridae) and Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae). In tomato, flubendiamide and chlorantraniliprole (IOBC category 1) were compatible with N. tenuis, but chlorpyrifos-methyl and spinosad (IOBC categories 2-3), which effectively reduced Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) density, compromised its predatory activity. In sweet pepper, chlorantraniliprole (IOBC category 1) was the only pesticide compatible with O. laevigatus while chlorantraniliprole, emamectin benzoate, spirotetramat and pymetrozine were harmless (IOBC category 1) to Amblyseius swirskii, and sulfoxaflor slightly harmful (IOBC category 2) to this phytoseiid predator.


Assuntos
Hemípteros/efeitos dos fármacos , Controle de Insetos/métodos , Inseticidas/administração & dosagem , Ácaros/efeitos dos fármacos , Comportamento Predatório , Animais , Capsicum/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Controle Biológico de Vetores
6.
Insects ; 10(8)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366061

RESUMO

The threat imposed by the bacterial pathogen Xylella fastidiosa to crops of utter importance to European agriculture such as olive, stone fruit and grapevine calls for immediate research against the meadow spittlebug, Philaenus spumarius (L.), the main European vector. Management tools should consider reducing juveniles of vector populations growing on weeds or cover crops during spring as nymphs have limited movement and do not contribute to disease spread. We examined a wide range of insecticides with different modes of action against P. spumarius nymphs in laboratory and semi-field glasshouse conditions. Pyrethroids (delthamethrin and λ-cyhalothrin) and natural pyrethrin (Pirecris®) + piperonyl butoxide (PBO) efficacy surpassed 86% after 24 h of exposure, without significant differences in the PBO amount tested. The inclusion of PBO caused a 3-fold increase in the mortality of P. spumarius nymphs compared to pyrethrin alone. Sulfoxaflor (Closer®) exhibited similar efficacy at 48 and 72 h but it was slow acting and mortality only reached 60% at 24 h. The LC90 was 34 ppm at 72 h. Pymetrozine, spirotetramat, azadirachtin and kaolin were not effective against nymphs (mortality <33%) although in azadirachtin-treated plants, mortality had a 3-fold increase from 24 to 72 h. Our results will help decision-making policy bodies to set up a sustainable integrated pest management of P. spumarius in areas where X. fastidiosa becomes a problem.

7.
PLoS One ; 14(3): e0213087, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840696

RESUMO

The split GFP technique is based on the auto-assembly of GFP when two polypeptides-GFP1-10 (residues 1-214; the detector) and GFP11 (residues 215-230; the tag)-both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.


Assuntos
Arabidopsis/virologia , Caulimovirus/patogenicidade , Proteínas de Fluorescência Verde/genética , Proteínas Virais/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Caulimovirus/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutagênese Sítio-Dirigida , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/metabolismo
8.
Insect Sci ; 24(6): 975-989, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28843026

RESUMO

Carbon dioxide (CO2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions.


Assuntos
Dióxido de Carbono/fisiologia , Mudança Climática , Produtos Agrícolas/virologia , Insetos Vetores/fisiologia , Doenças das Plantas , Animais , Produtos Agrícolas/metabolismo , Temperatura
9.
PLoS One ; 12(5): e0174398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467423

RESUMO

Drought is a major threat to crop production worldwide and is accentuated by global warming. Plant responses to this abiotic stress involve physiological changes overlapping, at least partially, the defense pathways elicited both by viruses and their herbivore vectors. Recently, a number of theoretical and empirical studies anticipated the influence of climate changes on vector-borne viruses of plants and animals, mainly addressing the effects on the virus itself or on the vector population dynamics, and inferring possible consequences on virus transmission. Here, we directly assess the effect of a severe water deficit on the efficiency of aphid-transmission of the Cauliflower mosaic virus (CaMV) or the Turnip mosaic virus (TuMV). For both viruses, our results demonstrate that the rate of vector-transmission is significantly increased from water-deprived source plants: CaMV transmission reproducibly increased by 34% and that of TuMV by 100%. In both cases, the enhanced transmission rate could not be explained by a higher virus accumulation, suggesting a more complex drought-induced process that remains to be elucidated. The evidence that infected plants subjected to drought are much better virus sources for insect vectors may have extensive consequences for viral epidemiology, and should be investigated in a wide range of plant-virus-vector systems.


Assuntos
Afídeos/virologia , Secas , Insetos Vetores/virologia , Vírus do Mosaico , Doenças das Plantas , Animais , Brassica rapa/virologia , Doenças das Plantas/virologia
10.
Insect Sci ; 24(6): 929-946, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28426155

RESUMO

By serving as vectors of transmission, insects play a key role in the infection cycle of many plant viruses. Viruses use sophisticated transmission strategies to overcome the spatial barrier separating plants and the impediment imposed by the plant cell wall. Interactions among insect vectors, viruses, and host plants mediate transmission by integrating all organizational levels, from molecules to populations. Best-examined on the molecular scale are two basic transmission modes wherein virus-vector interactions have been well characterized. Whereas association of virus particles with specific sites in the vector's mouthparts or in alimentary tract regions immediately posterior to them is required for noncirculative transmission, the cycle of particles through the vector body is necessary for circulative transmission. Virus transmission is also determined by interactions that are associated with changes in vector feeding behaviors and with alterations in plant host's morphology and/or metabolism that favor the attraction or deterrence of vectors. A recent concept in virus-host-vector interactions proposes that when vectors land on infected plants, vector elicitors and effectors "inform" the plants of the confluence of interacting entities and trigger signaling pathways and plant defenses. Simultaneously, the plant responses may also influence virus acquisition and inoculation by vectors. Overall, a picture is emerging where transmission depends on multilayered virus-vector-host interactions that define the route of a virus through the vector, and on the manipulation of the host and the vector. These interactions guarantee virus propagation until one or more of the interactants undergo changes through evolution or are halted by environmental interventions.


Assuntos
Insetos Vetores/virologia , Insetos/fisiologia , Doenças das Plantas/virologia , Vírus de Plantas , Plantas/virologia , Animais , Comportamento Animal , Plantas/metabolismo
11.
Sci Rep ; 6: 22785, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26941044

RESUMO

Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.


Assuntos
Afídeos/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Ecossistema , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Luteovirus/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/fisiologia , Animais , Afídeos/crescimento & desenvolvimento , Luteovirus/crescimento & desenvolvimento , Triticum/parasitologia , Triticum/virologia
12.
Sci Rep ; 6: 19120, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743585

RESUMO

Increasing atmospheric carbon dioxide (CO2) impacts plant growth and metabolism. Indirectly, the performance and feeding of insects is affected by plant nutritional quality and resistance traits. Life history and feeding behaviour of Myzus persicae were studied on pepper plants under ambient (aCO2, 400 ppm) or elevated CO2 (eCO2, 650 ppm), as well as the direct impact on plant growth and leaf chemistry. Plant parameters were significantly altered by eCO2 with a negative impact on aphid's life history. Their pre-reproductive period was 11% longer and fecundity decreased by 37%. Peppers fixed significantly less nitrogen, which explains the poor aphid performance. Plants were taller and had higher biomass and canopy temperature. There was decreased aphid salivation into sieve elements, but no differences in phloem ingestion, indicating that the diminished fitness could be due to poorer tissue quality and unfavourable C:N balance, and that eCO2 was not a factor impeding feeding. Aphid ability to transmit Cucumber mosaic virus (CMV) was studied by exposing source and receptor plants to ambient (427 ppm) or elevated (612 ppm) CO2 before or after virus inoculation. A two-fold decrease on transmission was observed when receptor plants were exposed to eCO2 before aphid inoculation when compared to aCO2.


Assuntos
Afídeos/efeitos dos fármacos , Capsicum/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Floema/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Animais , Afídeos/virologia , Capsicum/parasitologia , Capsicum/virologia , Cucumovirus/efeitos dos fármacos , Cucumovirus/crescimento & desenvolvimento , Cucumovirus/patogenicidade , Fertilidade/efeitos dos fármacos , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Nitrogênio/metabolismo , Floema/parasitologia , Floema/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Folhas de Planta/parasitologia , Folhas de Planta/virologia
13.
Pest Manag Sci ; 71(10): 1397-406, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25404196

RESUMO

BACKGROUND: Long-lasting insecticide-treated nets (LLITNs) constitute a novel alternative that combines physical and chemical tactics to prevent insect access and the spread of insect-transmitted plant viruses in protected enclosures. This approach is based on a slow-release insecticide-treated net with large hole sizes that allow improved ventilation of greenhouses. The efficacy of a wide range of LLITNs was tested under laboratory conditions against Myzus persicae, Aphis gossypii and Bemisia tabaci. Two nets were selected for field tests under a high insect infestation pressure in the presence of plants infected with Cucumber mosaic virus and Cucurbit aphid-borne yellows virus. The efficacy of Aphidius colemani, a parasitoid commonly used for biological control of aphids, was studied in parallel field experiments. RESULTS: LLITNs produced high mortality of aphids, although their efficacy decreased over time with sun exposure. Certain nets excluded whiteflies under laboratory conditions; however, they failed in the field. Nets effectively blocked the invasion of aphids and reduced the incidence of viruses in the field. The parasitoid A. colemani was compatible with LLITNs. CONCLUSION: LLITNs of appropriate mesh size can become a very valuable tool in combination with biocontrol agents for additional protection against insect vectors of plant viruses under IPM programmes.


Assuntos
Controle de Insetos/métodos , Insetos Vetores/efeitos dos fármacos , Insetos/efeitos dos fármacos , Inseticidas/farmacologia , Doenças das Plantas/prevenção & controle , Vírus de Plantas/fisiologia , Piretrinas/farmacologia , Animais , Controle de Insetos/instrumentação , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Insetos/fisiologia , Insetos/virologia , Doenças das Plantas/virologia
14.
J Photochem Photobiol B ; 138: 307-16, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25022465

RESUMO

Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire crop cycle but UV-A exposure did not affect leaf secondary metabolites. However, exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues as compounds implied in pest nutrition - proteins and sugars - were unaltered.


Assuntos
Afídeos/efeitos da radiação , Hemípteros/efeitos da radiação , Plantas/efeitos da radiação , Raios Ultravioleta , Aminoácidos/análise , Animais , Capsicum/metabolismo , Capsicum/parasitologia , Capsicum/efeitos da radiação , Carboidratos/análise , Cromatografia Líquida de Alta Pressão , Feminino , Fertilidade/efeitos da radiação , Espectrometria de Massas , Fenóis/análise , Fenóis/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/efeitos da radiação , Plantas/parasitologia , Proteínas/análise , Solanum melongena/metabolismo , Solanum melongena/parasitologia , Solanum melongena/efeitos da radiação , Fatores de Tempo
15.
Viruses ; 4(11): 3069-89, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23202516

RESUMO

Relationships between agents in multitrophic systems are complex and very specific. Insect-transmitted plant viruses are completely dependent on the behaviour and distribution patterns of their vectors. The presence of natural enemies may directly affect aphid behaviour and spread of plant viruses, as the escape response of aphids might cause a potential risk for virus dispersal. The spatio-temporal dynamics of Cucumber mosaic virus (CMV) and Cucurbit aphid-borne yellows virus (CABYV), transmitted by Aphis gossypii in a non-persistent and persistent manner, respectively, were evaluated at short and long term in the presence and absence of the aphid parasitoid, Aphidius colemani. SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersion at short term, which enhanced CMV spread, though consequences of parasitism suggest potential benefits for disease control at long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV at long term. The impact of aphid parasitoids on the dispersal of plant viruses with different transmission modes is discussed.


Assuntos
Afídeos/virologia , Cucumovirus/fisiologia , Insetos Vetores , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Análise Espaço-Temporal , Animais , Doenças das Plantas/parasitologia , Fatores de Tempo
16.
J Exp Bot ; 63(12): 4615-29, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22791822

RESUMO

Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described.


Assuntos
Catepsina F/metabolismo , Cistatinas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Precursores Enzimáticos/metabolismo , Hordeum/enzimologia , Albuminas/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Catepsina F/genética , Endosperma/efeitos dos fármacos , Endosperma/enzimologia , Endosperma/genética , Precursores Enzimáticos/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Germinação , Globulinas/metabolismo , Glutens/metabolismo , Glicosilação , Hordeum/efeitos dos fármacos , Hordeum/genética , Magnoliopsida/enzimologia , Magnoliopsida/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise , Proteínas Recombinantes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...