Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Basic Microbiol ; 62(7): 779-787, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35551685

RESUMO

Through the years, the genus Amycolatopsis has demonstrated its biotechnological potential. The need to clean up the environment and produce new antimicrobial molecules led to exploit promising bacterial genera such as Amycolatopsis. In this present work, we analyze the genome of the strain Amycolatopsis tucumanensis AB0 previously isolated from copper-polluted sediments. Phylogenomic and comparative analysis with the closest phylogenetic neighbor was performed. Our analysis showed the genetic potential of the strain to deal with heavy metals such as copper and mitigate oxidative stress. In addition, the ability to produce copper oxide nanoparticles and the presence of genes potentially involved in the synthesis of secondary metabolites suggest that A. tucumanensis may find utility in gray, red, and nano-biotechnology. To our knowledge, this is the first genomic analysis of an Amycolatopsis strain with potential for different biotechnological fields.


Assuntos
Actinomycetales , Cobre , Amycolatopsis , Cobre/metabolismo , DNA Bacteriano/genética , Genômica , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Heliyon ; 8(5): e09472, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35615433

RESUMO

The production of bioethanol and sugar from sugarcane is an important economic activity in several countries. Sugarcane is susceptible to different phytopathogens. Over the last years, the red stripe disease caused by the bacterium Acidovorax avenae subsp. avenae produced significant losses in sugarcane crops. Bio-nanotechnology emerged as an eco-friendly alternative to the biosynthesis of antimicrobial molecules. The aims of this study were to (a) produce extracellular silver nanoparticles using the heavy metal resistant strain Amycolatopsis tucumanensis, (b) evaluate their antibacterial in vitro effect and (c) determine the potential of silver nanoparticles to protect sugarcane against red stripe disease. Amycolatopsis tucumanensis synthesized spherical silver nanoparticles with an average size of 35 nm. Nanoparticles were able to control the growth of A. avenae subsp. avenae in in vitro assays. In addition, in vivo assays in sugarcane showed a control upon the red stripe disease when silver nanoparticles were applied as preventive treatment. The Disease Severity Index was 28.94% when silver nanoparticles were applied 3 days before inoculation with A. avenae subsp. a venae. To our knowledge, this is the first report of silver nanoparticles extracellularly synthesized by an Amycolatopsis strain that were able to inhibited the growth of A. avenae subsp. avenae and control the red stripe disease in sugarcane.

3.
Chemosphere ; 211: 1025-1034, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30223317

RESUMO

Highly contaminated γ-hexachlorocyclohexane (lindane) areas were reported worldwide. Low aqueous solubility and high hydrophobicity make lindane particularly resistant to microbial degradation. Physiological and genetic Streptomyces features make this genus more appropriate for bioremediation compared with others. Complete degradation of lindane was only proposed in the genus Sphingobium although the metabolic context of the degradation was not considered. Streptomyces sp.M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic, RT-qPCR and exhaustive bioinformatic analysis to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. In addition, results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. To our knowledge, this is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.


Assuntos
Hexaclorocicloexano/metabolismo , Redes e Vias Metabólicas , Proteoma/metabolismo , Proteômica/métodos , Streptomyces/genética , Streptomyces/metabolismo , Transcriptoma , Biodegradação Ambiental , Proteoma/análise
4.
Front Microbiol ; 7: 830, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313571

RESUMO

Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms. Herein, we report the molecular cloning and heterologous expression of the gene coding for ADP-glucose pyrophosphorylase (EC 2.7.7.27) of Rhodococcus jostii, strain RHA1. The recombinant enzyme was purified to electrophoretic homogeneity to accurately characterize its oligomeric, kinetic, and regulatory properties. The R. jostii ADP-glucose pyrophosphorylase is a homotetramer of 190 kDa exhibiting low basal activity to catalyze synthesis of ADP-glucose, which is markedly influenced by different allosteric effectors. Glucose-6P, mannose-6P, fructose-6P, ribose-5P, and phosphoenolpyruvate were major activators; whereas, NADPH and 6P-gluconate behaved as main inhibitors of the enzyme. The combination of glucose-6P and other effectors (activators or inhibitors) showed a cross-talk effect suggesting that the different metabolites could orchestrate a fine regulation of ADP-glucose pyrophosphorylase in R. jostii. The enzyme exhibited some degree of affinity toward ATP, GTP, CTP, and other sugar-1P substrates. Remarkably, the use of glucosamine-1P was sensitive to allosteric activation. The relevance of the fine regulation of R. jostii ADP-glucose pyrophosphorylase is further analyzed in the framework of proteomic studies already determined for the bacterium. Results support a critical role for glycogen as a temporal reserve that provides a pool of carbon able of be re-routed to produce long-term storage of lipids under certain conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...