Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 70(1): 209-13, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17475352

RESUMO

A PCR-based assay targeting hcnAB, essential genes for hydrogen cyanide (HCN) biosynthesis, allowed sensitive detection of HCN(+) pseudomonads between logs 2.9 and 3.5 cells per PCR reaction tube. RFLP analysis revealed 13 allele combinations among selected 2,4-diacetylphloroglucinol-producing (Phl(+))HCN(+), and 13 alleles in Phl(-) HCN(+) strains from a global collection.


Assuntos
Genes Bacterianos , Cianeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Reação em Cadeia da Polimerase/métodos , Pseudomonas/classificação , Pseudomonas/genética , Impressões Digitais de DNA , DNA Bacteriano/genética , Genótipo , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo
2.
Mol Plant Microbe Interact ; 14(5): 639-52, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11332728

RESUMO

Many biocontrol fluorescent pseudomonads can protect plants from soilborne fungal pathogens through production of the antifungal secondary metabolite 2,4-diacetylphloroglucinol (Phl). One of the phl biosynthetic genes, phlD, encodes a polyketide synthase similar to plant chalcone synthases. Here, restriction analysis of phlD from 39 Phl+ biocontrol fluorescent pseudomonads yielded seven different banding patterns. The gene was sequenced in seven strains, representing the different restriction patterns. Cluster analysis of phlD restriction data or phlD sequences indicated that phlD polymorphism was high, and two main clusters were obtained when predicted PhlD sequences were compared. When the seven PhlD sequences were studied with those of other procaryotic polyketide synthases (gram-positive bacteria) and plant chalcone synthases, however, Phl+ pseudomonads, gram-positive bacteria, and plants clustered separately. Yet, sequence analysis of active site regions for PhlD and plant chalcone synthases revealed that PhlD can be considered a member of the chalcone synthase family, which may be interpreted as convergent evolution of key enzymes involved in secondary metabolism. For the 39 Phl+ pseudomonads, a relationship was found among phlD restriction patterns, phylogenetic groups defined by 16S rDNA restriction analysis (confirmed by 16S rDNA sequencing), and production levels of Phl in vitro.


Assuntos
Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/genética , Complexos Multienzimáticos/genética , Floroglucinol/metabolismo , Plantas/enzimologia , Pseudomonas/enzimologia , Pseudomonas/genética , Aciltransferases/química , Aciltransferases/genética , Sequência de Aminoácidos , Sequência Conservada , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Floroglucinol/análogos & derivados , Filogenia , Plantas/classificação , Plantas/genética , Pseudomonas/classificação , Mapeamento por Restrição , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
3.
J Appl Microbiol ; 90(4): 567-77, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11309069

RESUMO

AIMS: To assess the effects of soil type and time of the year on survival of the biocontrol inoculant Pseudomonas fluorescens CHA0 under aerobic conditions in lysimeter effluent water. METHODS AND RESULTS: Effluent water was collected at different times from large outdoor lysimeters (2.5 m deep), which contained a well-drained or a poorly-drained cambisol, and inoculated with CHA0. The inoculant was monitored for 175 d by colony counts, total immunofluorescence cell counts and Kogure's viable cell counts. Cell numbers obtained with the three methods were similar. The inoculant declined exponentially in time and its population level varied considerably depending on the time of the year at which effluent water had been collected and soil type in the lysimeter. Positive correlations were found between the number of resident culturable aerobic bacteria and subsequent survival of the inoculant. CONCLUSION: The fluctuations of inoculant survival patterns correlated with differences in biological properties of lysimeter water that were related to soil type and time of the year. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggest that predictability of the survival of bacterial soil inoculants transported to groundwater level by heavy rainfall may be improved by taking into account key biological properties of the water.


Assuntos
Pseudomonas fluorescens/fisiologia , Microbiologia do Solo , Solo , Fatores de Tempo
4.
Appl Environ Microbiol ; 67(4): 1851-64, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11282643

RESUMO

Little is known about the effects of Pseudomonas biocontrol inoculants on nontarget rhizosphere fungi. This issue was addressed using the biocontrol agent Pseudomonas fluorescens CHA0-Rif, which produces the antimicrobial polyketides 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt) and protects cucumber from several fungal pathogens, including Pythium spp., as well as the genetically modified derivative CHA0-Rif(pME3424). Strain CHA0-Rif(pME3424) overproduces Phl and Plt and displays improved biocontrol efficacy compared with CHA0-Rif. Cucumber was grown repeatedly in the same soil, which was left uninoculated, was inoculated with CHA0-Rif or CHA0-Rif(pME3424), or was treated with the fungicide metalaxyl (Ridomil). Treatments were applied to soil at the start of each 32-day-long cucumber growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first and fifth cycles. Over 11,000 colonies were studied and assigned to 105 fungal species (plus several sterile morphotypes). The most frequently isolated fungal species (mainly belonging to the genera Paecilomyces, Phialocephala, Fusarium, Gliocladium, Penicillium, Mortierella, Verticillium, Trichoderma, Staphylotrichum, Coniothyrium, Cylindrocarpon, Myrothecium, and Monocillium) were common in the four treatments, and no fungal species was totally suppressed or found exclusively following one particular treatment. However, in each of the two growth cycles studied, significant differences were found between treatments (e.g., between the control and the other treatments and/or between the two inoculation treatments) using discriminant analysis. Despite these differences in the composition and/or relative abundance of species in the fungal community, treatments had no effect on species diversity indices, and species abundance distributions fit the truncated lognormal function in most cases. In addition, the impact of treatments at the 32-day mark of either growth cycle was smaller than the effect of growing cucumber repeatedly in the same soil.


Assuntos
Cucumis sativus/microbiologia , Fungos/crescimento & desenvolvimento , Controle Biológico de Vetores , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/crescimento & desenvolvimento , Microbiologia do Solo , Alanina/administração & dosagem , Alanina/análogos & derivados , Cucumis sativus/efeitos dos fármacos , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Fungicidas Industriais/administração & dosagem , Engenharia Genética , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo
5.
Phytopathology ; 91(9): 873-81, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18944233

RESUMO

ABSTRACT Production of the polyketide antimicrobial metabolite 2,4-diacetyl-phloroglucinol (DAPG) is a key factor in the biocontrol activity of Pseudomonas fluorescens CHA0. Strain CHA0 carrying a translational phlA'-'lacZ fusion was used to monitor expression of the phl biosynthetic genes in vitro and in the rhizosphere. Expression of the reporter gene accurately reflected actual production of DAPG in vitro and in planta as determined by direct extraction of the antimicrobial compound. In a gnotobiotic system containing a clay and sand-based artificial soil, reporter gene expression was significantly greater in the rhizospheres of two monocots (maize and wheat) compared with gene expression in the rhizospheres of two dicots (bean and cucumber). We observed this host genotype effect on bacterial gene expression also at the level of cultivars. Significant differences were found among six additional maize cultivars tested under gnotobiotic conditions. There was no difference between transgenic maize expressing the Bacillus thuringiensis insecticidal gene cry1Ab and the near-isogenic parent line. Plant age had a significant impact on gene expression. Using maize as a model, expression of the phlA'-'lacZ reporter gene peaked at 24 h after planting of pregerminated seedlings, and dropped to a fourth of that value within 48 h, remaining at that level throughout 22 days of plant growth. Root infection by Pythium ultimum stimulated bacterial gene expression on both cucumber and maize, and this was independent of differences in rhizosphere colonization on these host plants. To our knowledge, this is the first comprehensive evaluation of how biotic factors that commonly confront bacterial inoculants in agricultural systems (host genotype, host age, and pathogen infection) modulate the expression of key biocontrol genes for disease suppression.

6.
Antonie Van Leeuwenhoek ; 79(3-4): 327-36, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11816976

RESUMO

In Pseudomonasfluorescens strain CHAO, the response regulator gene gacA controls expression of extracellular enzymes and antifungal secondary metabolites, which are important for this strain's biocontrol activity in the plant rhizosphere. Two Tn5 insertion mutants of strain CHA0 that had the same pleiotropic phenotype as gacA mutants were complemented by the gacS sensor kinase gene of P. syringae pv. syringae as well as that of P. fluorescens strain Pf-5, indicating that both transposon insertions had occurred in the gacS gene of strain CHA0. This conclusion was supported by Southern hybridisation using a gacS probe from strain Pf-5. Overexpression of the wild-type gacA gene partially compensated for the gacS mutation, however, the overexpressed gacA gene was not stably maintained, suggesting that this is deleterious to the bacterium. Strain CHA0 grown to stationary phase in nutrient-rich liquid media for several days accumulated spontaneous pleiotropic mutants to levels representing 1.25% of the population; all mutants lacked key antifungal metabolites and extracellular protease. Half of 44 spontaneous mutants tested were complemented by gacS, the other half were restored by gacA. Independent point and deletion mutations arose at different sites in the gacA gene. In competition experiments with mixtures of the wild type and a gacA mutant incubated in nutrient-rich broth, the mutant population temporarily increased as the wild type decreased. In conclusion, loss of gacA function can confer a selective advantage on strain CHA0 under laboratory conditions.


Assuntos
Proteínas de Bactérias/genética , Fungos , Mutação , Controle Biológico de Vetores , Pseudomonas fluorescens/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
7.
Can J Microbiol ; 46(10): 898-907, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11068676

RESUMO

Pseudomonas fluorescens strain CHA0, a root colonizing bacterium, has a broad spectrum of biocontrol activity against plant diseases. However, strain CHA0 is unable to utilize 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of plant ethylene, as a sole source of nitrogen. This suggests that CHA0 does not contain the enzyme ACC deaminase, which cleaves ACC to ammonia and alpha-ketobutyrate, and was previously shown to promote root elongation of plant seedlings treated with bacteria containing this enzyme. An ACC deaminase gene, together with its regulatory region, was transferred into P. fluorescens strains CHA0 and CHA96, a global regulatory gacA mutant of CHA0. ACC deaminase activity was expressed in both CHA0 and CHA96. Transformed strains with ACC deaminase activity increased root length of canola plants under gnotobiotic conditions, whereas strains without this activity had no effect. Introduction of ACC deaminase genes into strain CHA0 improved its ability to protect cucumber against Pythium damping-off, and potato tubers against Erwinia soft rot in small hermetically sealed containers. In contrast, ACC deaminase activity had no significant effect on the ability of CHA0 to protect tomato against Fusarium crown and root rot, and potato tubers against soft rot in large hermetically sealed containers. These results suggest that (i) ACC deaminase activity may have lowered the level of plant ethylene thereby increasing root length; (ii) the role of stress-generated plant ethylene in susceptibility or resistance depends on the host-pathogen system, and on the experimental conditions used; and (iii) the constructed strains could be developed as biosensors for the role of ethylene in plant diseases.


Assuntos
Carbono-Carbono Liases/genética , Conjugação Genética , Controle Biológico de Vetores , Raízes de Plantas/crescimento & desenvolvimento , Pseudomonas fluorescens/enzimologia , Pseudomonas fluorescens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Cucumis sativus/microbiologia , Erwinia/crescimento & desenvolvimento , Etilenos/metabolismo , Fusarium/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Fenótipo , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/crescimento & desenvolvimento , Pythium/crescimento & desenvolvimento , Solanum tuberosum/microbiologia
8.
Appl Environ Microbiol ; 66(8): 3142-50, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10919762

RESUMO

Secondary metabolism in fluorescent pseudomonads is globally regulated by gacS, which encodes a membrane-bound sensor kinase, and gacA, which encodes a transcriptional response regulator. Spontaneous mutation in either gene blocked biosynthesis of the antimicrobial compounds hydrogen cyanide, 2,4-diacetylphloroglucinol, pyoluteorin, and pyrrolnitrin by the model biocontrol strain Pseudomonas fluorescens CHA0. Spontaneous mutants also had altered abilities to utilize several carbon sources and to increase medium pH compared with the wild type, suggesting that gacS and gacA influence primary as well as secondary bacterial metabolism. Inoculant efficacy for biocontrol was significantly reduced by contamination with regulatory mutants which accumulated during inoculum production. Spontaneous mutants accumulated in all 192 separate liquid cultures examined, typically at a frequency of 1% or higher after 12 days. During scale-up in a simulated industrial fermentation process, mutants increased exponentially and accounted for 7, 23, and 61% of the total viable cells after transfer to 20-, 100-, and 500-ml preparations, respectively. GacS(-) and GacA(-) mutants had identical phenotypes and occurred at the same frequency, indicating that the selective pressures for the two mutants were similar. We developed a simple screening method for monitoring inoculant quality based on the distinctive appearance of mutant colonies (i.e., orange color, enlarged diameter, hyperfluorescence). Mutant competitiveness was favored in a nutrient-rich medium with a high electrolyte concentration (nutrient broth containing yeast extract). We were able to control mutant accumulation and to clean up contaminated cultures by using certain mineral amendments (i.e., zinc, copper, cobalt, manganese, and ammonium molybdate) or by diluting media 1/10. Spontaneous mutants and genetic constructs had the same response to culture conditions. Zinc and medium dilution were also effective for improving the genetic stability of other P. fluorescens biocontrol strains obtained from Ghana and Italy.


Assuntos
Proteínas de Bactérias/genética , Genes Reguladores , Controle Biológico de Vetores , Pseudomonas fluorescens/genética , Fatores de Transcrição/genética , Cobre/farmacologia , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genótipo , Mutação , Fenótipo , Pseudomonas fluorescens/classificação , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas fluorescens/metabolismo , Pythium/crescimento & desenvolvimento , Zinco/farmacologia
9.
Appl Environ Microbiol ; 66(4): 1662-7, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10742257

RESUMO

The effects of oxygen limitation, low redox potential, and high NaCl stress for 7 days in vitro on the rifampin-resistant biocontrol inoculant Pseudomonas fluorescens CHA0-Rif and its subsequent persistence in natural soil for 54 days were investigated. Throughout the experiment, the strain was monitored using total cell counts (immunofluorescence microscopy), Kogure's direct viable counts, and colony counts (on rifampin-containing plates). Under in vitro conditions, viable-but-nonculturable (VBNC) cells of CHA0-Rif were obtained when the strain was exposed to a combination of low redox potential (230 mV) and oxygen limitation. This mimics a situation observed in the field, where VBNC cells of the strain were found in the water-logged soil layer above the plow pan. Here, VBNC cells were also observed in vitro when CHA0-Rif was subjected to high NaCl levels (i.e., NaCl at 1.5 M but not 0.7 M). In all treatments, cell numbers remained close to the inoculum level for the first 12 days after inoculation of soil, regardless of the cell enumeration method used, but decreased afterwards. At the last two samplings in soil, VBNC cells of CHA0-Rif were found in all treatments except the one in which log-phase cells had been used. In the two treatments that generated high numbers of VBNC cells in vitro, VBNC cells did not display enhanced persistence compared with culturable cells once introduced into soil, which suggests that this VBNC state did not represent a physiological strategy to improve survival under adverse conditions.


Assuntos
Pseudomonas fluorescens/crescimento & desenvolvimento , Microbiologia do Solo , Contagem de Colônia Microbiana , Meios de Cultura , Resistência Microbiana a Medicamentos , Oxirredução , Oxigênio/metabolismo , Controle Biológico de Vetores , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/fisiologia , Rifampina/farmacologia , Cloreto de Sódio/farmacologia
10.
J Bacteriol ; 182(5): 1215-25, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10671440

RESUMO

The antimicrobial metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) contributes to the capacity of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soilborne pathogens. A 2, 4-DAPG-negative Tn5 insertion mutant of strain CHA0 was isolated, and the nucleotide sequence of the 4-kb genomic DNA region adjacent to the Tn5 insertion site was determined. Four open reading frames were identified, two of which were homologous to phlA, the first gene of the 2,4-DAPG biosynthetic operon, and to the phlF gene encoding a pathway-specific transcriptional repressor. The Tn5 insertion was located in an open reading frame, tentatively named phlH, which is not related to known phl genes. In wild-type CHA0, 2, 4-DAPG production paralleled expression of a phlA'-'lacZ translational fusion, reaching a maximum in the late exponential growth phase. Thereafter, the compound appeared to be degraded to monoacetylphloroglucinol by the bacterium. 2,4-DAPG was identified as the active compound in extracts from culture supernatants of strain CHA0 specifically inducing phlA'-'lacZ expression about sixfold during exponential growth. Induction by exogenous 2,4-DAPG was most conspicuous in a phlA mutant, which was unable to produce 2, 4-DAPG. In a phlF mutant, 2,4-DAPG production was enhanced severalfold and phlA'-'lacZ was expressed at a level corresponding to that in the wild type with 2,4-DAPG added. The phlF mutant was insensitive to 2,4-DAPG addition. A transcriptional phlA-lacZ fusion was used to demonstrate that the repressor PhlF acts at the level of transcription. Expression of phlA'-'lacZ and 2,4-DAPG synthesis in strain CHA0 was strongly repressed by the bacterial extracellular metabolites salicylate and pyoluteorin as well as by fusaric acid, a toxin produced by the pythopathogenic fungus Fusarium. In the phlF mutant, these compounds did not affect phlA'-'lacZ expression and 2, 4-DAPG production. PhlF-mediated induction by 2,4-DAPG and repression by salicylate of phlA'-'lacZ expression was confirmed by using Escherichia coli as a heterologous host. In conclusion, our results show that autoinduction of 2,4-DAPG biosynthesis can be countered by certain bacterial (and fungal) metabolites. This mechanism, which depends on phlF function, may help P. fluorescens to produce homeostatically balanced amounts of extracellular metabolites.


Assuntos
Antibacterianos/metabolismo , Pseudomonas fluorescens/metabolismo , Salicilatos/metabolismo , Antibacterianos/farmacologia , Clonagem Molecular , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Fungicidas Industriais/metabolismo , Ácido Fusárico/farmacologia , Fusarium/química , Fusarium/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Dados de Sequência Molecular , Mutação , Fenóis , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/isolamento & purificação , Pirróis , Salicilatos/farmacologia , Análise de Sequência de DNA
11.
Appl Environ Microbiol ; 65(6): 2429-38, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10347023

RESUMO

Understanding the environmental factors that regulate the biosynthesis of antimicrobial compounds by disease-suppressive strains of Pseudomonas fluorescens is an essential step toward improving the level and reliability of their biocontrol activity. We used liquid culture assays to identify several minerals and carbon sources which had a differential influence on the production of the antibiotics 2,4-diacetylphloroglucinol (PHL), pyoluteorin (PLT), and pyrrolnitrin and the siderophores salicylic acid and pyochelin by the model strain CHA0, which was isolated from a natural disease-suppressive soil in Switzerland. Production of PHL was stimulated by Zn2+, NH4Mo2+, and glucose; the precursor compound mono-acetylphloroglucinol was stimulated by the same factors as PHL. Production of PLT was stimulated by Zn2+, Co2+, and glycerol but was repressed by glucose. Pyrrolnitrin production was increased by fructose, mannitol, and a mixture of Zn2+ and NH4Mo2+. Pyochelin production was increased by Co2+, fructose, mannitol, and glucose. Interestingly, production of its precursor salicylic acid was increased by different factors, i.e., NH4Mo2+, glycerol, and glucose. The mixture of Zn2+ and NH4Mo2+ with fructose, mannitol, or glycerol further enhanced the production of PHL and PLT compared with either the minerals or the carbon sources used alone, but it did not improve siderophore production. Extending fermentation time from 2 to 5 days increased the accumulation of PLT, pyrrolnitrin, and pyochelin but not of PHL. When findings with CHA0 were extended to an ecologically and genetically diverse collection of 41 P. fluorescens biocontrol strains, the effect of certain factors was strain dependent, while others had a general effect. Stimulation of PHL by Zn2+ and glucose was strain dependent, whereas PLT production by all strains that can produce this compound was stimulated by Zn2+ and transiently repressed by glucose. Inorganic phosphate reduced PHL production by CHA0 and seven other strains tested but to various degrees. Production of PLT but not pyrrolnitrin by CHA0 was also reduced by 100 mM phosphate. The use of 1/10-strength nutrient broth-yeast extract, compared with standard nutrient broth-yeast extract, amended with glucose and/or glycerol resulted in dramatically increased accumulations of PHL (but not PLT), pyochelin, and salicylic acid, indicating that the ratio of carbon source to nutrient concentration played a key role in the metabolic flow. The results of this study (i) provide insight into the biosynthetic regulation of antimicrobial compounds, (ii) limit the number of factors for intensive study in situ, and (iii) indicate factors that can be manipulated to improve bacterial inoculants.


Assuntos
Antibacterianos/biossíntese , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas fluorescens/metabolismo , Sideróforos/biossíntese , Tiazóis , Contagem de Colônia Microbiana , Meios de Cultura , Controle Biológico de Vetores , Fenóis/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Pirróis , Pirrolnitrina/biossíntese , Ácido Salicílico/metabolismo , Microbiologia do Solo
12.
J Bacteriol ; 180(12): 3187-96, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9620970

RESUMO

The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Genes Bacterianos , Complexos Multienzimáticos/genética , Família Multigênica , Oxirredutases/genética , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Transativadores , Fatores de Transcrição/metabolismo , Aerobiose , Sequência de Aminoácidos , Anaerobiose , Proteínas de Bactérias/genética , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/genética , Dados de Sequência Molecular , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2 , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Plantas Tóxicas , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Homologia de Sequência de Aminoácidos , Nicotiana/microbiologia , Fatores de Transcrição/genética
13.
Phytopathology ; 88(7): 678-84, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18944940

RESUMO

ABSTRACT Application of salicylic acid induces systemic acquired resistance in tobacco. pchA and pchB, which encode for the biosynthesis of salicylic acid in Pseudomonas aeruginosa, were cloned into two expression vectors, and these constructs were introduced into two root-colonizing strains of P. fluorescens. Introduction of pchBA into strain P3, which does not produce salicylic acid, rendered this strain capable of salicylic acid production in vitro and significantly improved its ability to induce systemic resistance in tobacco against tobacco necrosis virus. Strain CHA0 is a well-described biocontrol agent that naturally produces salicylic acid under conditions of iron limitation. Introduction of pchBA into CHA0 increased the production of salicylic acid in vitro and in the rhizosphere of tobacco, but did not improve the ability of CHA0 to induce systemic resistance in tobacco. In addition, these genes did not improve significantly the capacity of strains P3 and CHA0 to suppress black root rot of tobacco in a gnotobiotic system.

14.
Appl Environ Microbiol ; 63(1): 213-9, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16535486

RESUMO

Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.

15.
Plant Dis ; 81(5): 492-496, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-30861928

RESUMO

Nonpathogenic Fusarium oxysporum strain Fo47 controls the incidence of Fusarium wilt. Four bioassays in which a strain of the pathogen F. oxysporum f. sp. lycopersici and Fo47 were not in direct contact were developed to evaluate whether Fo47 could induce resistance to Fusarium wilt in tomato plants. Fo47 and the pathogen were separated either physically or in time. Bio-assays were carried out under hydroponic conditions (two bioassays), in potting mix, or in autoclaved soil. Strain Fo47 protected tomato against Fusarium wilt in all four bioassays. Inoculation with Fo47 increased chitinase, ß-1,3-glucanase, and ß-1,4-glucosidase activity in plants, confirming the ability of Fo47 to induce resistance in tomato. This report is the first to demonstrate that a nonpathogenic strain of F. oxysporum can induce resistance to Fusarium wilt in tomato plants. This result has important practical implications for biocontrol of tomato diseases under commercial conditions.

16.
Appl Environ Microbiol ; 63(10): 3776-82, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16535703

RESUMO

The persistence of the biocontrol agent Pseudomonas fluorescens CHA0 in the surface horizon of 12 large outdoor lysimeters planted with winter wheat, Phacelia tanacetifolia followed by spring wheat, or maize was monitored for 1 year. Soil was inoculated with a spontaneous rifampin-resistant mutant (CHA0-Rif) of CHA0, and the strain was studied by using colony counts, Kogure's direct viable counts, and total counts (immunofluorescence). The number of culturable cells of the inoculant decreased progressively from 8 to 2 log CFU/g of soil or lower. However, culturable cells of CHA0-Rif accounted for less than 1% of the total cells of the inoculant 8 months after release in autumn. Since viable but nonculturable cells represented less than a quarter of the latter, most cells of CHA0-Rif in soil were thus inactive-dormant or dead at that time. Nonculturable cells of the inoculant were predominant also in the surface horizon of the lysimeters inoculated in the spring, and a significant fraction of them were viable. Results suggest that the occurrence of nonculturable cells of CHA0-Rif was influenced by climatic factors (water availability and soil temperature) and the abundance of roots in soil. The fact that the inoculant persisted as mixed populations of cells of different physiological states, in which nonculturable cells were predominant, needs to be taken into account when assessing the autecology of wild-type or genetically modified pseudomonads released into the soil ecosystem.

17.
Phytopathology ; 87(12): 1250-7, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18945026

RESUMO

ABSTRACT Crown and root rot of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici is an increasing problem in Europe, Israel, Japan, and North America. The biocontrol agent Pseudomonas fluorescens strain CHA0 provides only moderate control of this disease. A one-time amendment of zinc EDTA at 33 mug of Zn(2+)/ml to hydroponic nutrient solution in soilless rockwool culture did not reduce disease when used alone, but did reduce disease by 25% in the presence of CHA0. In in vitro studies with the pathogen, zinc at concentrations as low as 10 mug/ml abolished production of the phytotoxin fusaric acid, a Fusarium pathogenicity factor, and increased production of microconidia over 100-fold, but reduced total biomass. Copper EDTA at 33 mug of Cu(2+)/ml had a similar effect as zinc on the pathogen in vitro; it reduced disease when used alone, and increased the biocontrol activity of CHA0 in soilless culture. Ammonium-molybdate neither improved the biocontrol activity of CHA0 nor affected production of fusaric acid or microconidia. Strain CHA0 did not degrade fusaric acid. Fusaric acid at concentrations as low as 0.12 mug/ml repressed production by CHA0 of the antibiotic 2,4-diacetylphloroglucinol, a key factor in the biocontrol activity of this strain. Production of pyoluteorin by CHA0 was also reduced, but production of hydrogen cyanide and protease was not affected, suggesting that fusaric acid affects biosynthesis at a regulatory level downstream of gacA and apdA genes. Fusaric acid did not affect the recovery of preformed antibiotics nor did it affect bacterial growth even at concentrations as high as 200 mug/ml. When microbial meta-bolite production was measured in the rockwool bioassay, zinc amendments reduced fusaric acid production and enhanced 2,4-diacetylphloro-glucinol production. We suggest that zinc, which did not alleviate the repression of antibiotic biosynthesis by fusaric acid, improved biocontrol activity by reducing fusaric acid production by the pathogen, which resulted in increased antibiotic production by the biocontrol agent. This demonstrates that pathogens can have a direct negative impact on the mechanism(s) of biocontrol agents.

18.
Appl Environ Microbiol ; 62(2): 552-63, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8593055

RESUMO

The broad-spectrum antibiotic 2,4-diacetylphloroglucinol (PHL) is a major determinant in the biological control of a range of plant pathogens by many fluorescent Pseudomonas spp. A 4.8-kb chromosomal DNA region from Pseudomonas fluorescens Q2-87, carrying PHL biosynthetic genes, was used as a probe to determine if the PHL biosynthetic locus is conserved within PHL-producing Pseudomonas strains of worldwide origin. The phl gene probe hybridized with the genomic DNA of all 45 PHL-producing Pseudomonas strains tested, including well-characterized biocontrol strains from the United States and Europe and strains isolated from disease-suppressive soils from Switzerland, Washington, Italy, and Ghana. The PHL producers displayed considerable phenotypic and genotypic diversity. Two phenotypically distinct groups were detected. The first produced PHL, pyoluteorin, and hydrogen cyanide and consisted of 13 strains from almost all locations sampled in the United States, Europe, and Africa. The second produced only PHL and HCN and consisted of 32 strains from the U.S. and European soils. Analysis of restriction patterns of genomic DNA obtained after hybridization with the phl gene probe and cluster analysis of restriction patterns of amplified DNA coding for 16S rRNA (ARDRA) and randomly amplified polymorphic DNA (RAPD) markers indicated that the strains that produced both PHL and pyoluteorin were genetically highly similar. In contrast, there was more diversity at the genotypic level in the strains that produced PHL but not pyoluteorin. ARDRA analysis of these strains indicated two clusters which, on the basis of RAPD analysis, split into several subgroups with additional polymorphisms. In general, the occurrence of phenotypically and genotypically similar groups of PHL producers did not correlate with the geographic origin of the isolates, and highly similar strains could be isolated from diverse locations worldwide.


Assuntos
Antifúngicos/biossíntese , Pseudomonas/genética , Pseudomonas/metabolismo , Sequência de Bases , Sequência Conservada , Impressões Digitais de DNA , Primers do DNA/genética , DNA Bacteriano/genética , Genes Bacterianos , Genótipo , Dados de Sequência Molecular , Micoses/prevenção & controle , Fenótipo , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas/isolamento & purificação , Microbiologia do Solo
19.
Appl Environ Microbiol ; 62(1): 33-40, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16535221

RESUMO

The large-scale release of wild-type or genetically modified bacteria into the environment for control of plant diseases or for bioremediation entails the potential risk of groundwater contamination by these microorganisms. For a model study on patterns of vertical transport of bacteria under field conditions, the biocontrol strain Pseudomonas fluorescens CHA0, marked with a spontaneous resistance to rifampin (CHA0-Rif), was applied to a grass-clover ley plot (rotation grassland) and a wheat plot. Immediately after bacterial application, heavy precipitation was simulated by sprinkling, over a period of 8 h, 40 mm of water containing the mobile tracer potassium bromide and the dye Brilliant Blue FCF to identify channels of preferential flow. One day later, a 150-cm-deep soil trench was dug and soil profiles were prepared. Soil samples were extracted at different depths of the profiles and analyzed for the number of CHA0-Rif cells and the concentration of bromide and Brilliant Blue FCF. Dye coverage in the soil profiles was estimated by image analysis. CHA0 was present at 10(sup8) CFU/g in the surface soil, and 10(sup6) to 10(sup7) CFU/g of CHA0 was detected along macropores between 10 and 150 cm deep. Similarly, the concentration of the tracer bromide along the macropores remained at the same level below 20 cm deep. Dye coverage in lower soil layers was higher in the ley than in the wheat plot. In nonstained parts of the profiles, the number of CHA0-Rif cells was substantially smaller and the bromide concentration was below the detection limit in most samples. We conclude that after heavy rainfall, released bacteria are rapidly transported in large numbers through the channels of preferential flow to deeper soil layers. Under these conditions, the transport of CHA0-Rif is similar to that of the conservative tracer bromide and is affected by cultural practice.

20.
Appl Environ Microbiol ; 61(11): 3856-64, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8526497

RESUMO

Pseudomonas fluorescens CHA0 produces several secondary metabolites, e.g., the antibiotics pyoluteorin (Plt) and 2,4-diacetylphloroglucinol (Phl), which are important for the suppression of root diseases caused by soil-borne fungal pathogens. A Tn5 insertion mutant of strain CHA0, CHA625, does not produce Phl, shows enhanced Plt production on malt agar, and has lost part of the ability to suppress black root rot in tobacco plants and take-all in wheat. We used a rapid, two-step cloning-out procedure for isolating the wild-type genes corresponding to those inactivated by the Tn5 insertion in strain CHA625. This cloning method should be widely applicable to bacterial genes tagged with Tn5. The region cloned from P. fluorescens contained three complete open reading frames. The deduced gene products, designated PqqFAB, showed extensive similarities to proteins involved in the biosynthesis of pyrroloquinoline quinone (PQQ) in Klebsiella pneumoniae, Acinetobacter calcoaceticus, and Methylobacterium extorquens. PQQ-negative mutants of strain CHA0 were constructed by gene replacement. They lacked glucose dehydrogenase activity, could not utilize ethanol as a carbon source, and showed a strongly enhanced production of Plt on malt agar. These effects were all reversed by complementation with pqq+ recombinant plasmids. The growth of a pqqF mutant on ethanol and normal Plt production were restored by the addition of 16 nM PQQ. However, the Phl- phenotype of strain CHA625 was due not to the pqq defect but presumably to a secondary mutation. In conclusion, a lack of PQQ markedly stimulates the production of Plt in P. fluorescens.


Assuntos
Antibacterianos/biossíntese , Genes Bacterianos , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Etanol/metabolismo , Glucose/metabolismo , Dados de Sequência Molecular , Mutação , Cofator PQQ , Fenóis , Pirróis , Quinolonas/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...