Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Biol ; 60(1): 1278-1285, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35797701

RESUMO

CONTEXT: Global studies on Argemone mexicana L. (Papaveraceae) traditionally used against malaria in Mali are limited to its low-mass compounds activities, and little information on its bioactive polysaccharides is available. OBJECTIVE: This study determines the structure and the immunomodulatory activity of polysaccharides from aerial parts of A. mexicana. MATERIALS AND METHODS: Acidic polysaccharides from this plant material named HMAmA1 and HMAmA2 were isolated from water extracts. Their monosaccharide composition was determined by gas chromatography. Glycosidic linkages were determined using GC-MS. NMR was also applied. The polymers were tested for effects on the human complement system in vitro at different doses. RESULTS: The monosaccharide composition showed that the two polysaccharides contained in different amounts the following monomers: arabinose, rhamnose, galactose, and galacturonic acid. Overall structural analysis showed the presence of a low ratio of 1,2-linked rhamnose compared to 1,4-linked galacturonic acid with arabinogalactans substituted on position 4 of rhamnose. NMR data showed the presence of galacturonans alternated by rhamnogalacturonans bearing arabinose and galactose units. α-Linkages were found for l-arabinose, l-rhamnose and d-galacturonic acid, while ß-linkages were found for d-galactose. The two polysaccharides exhibited strong complement fixation activities, with HMAmA1 being the highest potent fraction. ICH50 value of HMAmA1 was 5 µg/mL, compared to the control BPII being 15.9 µg/mL. DISCUSSION AND CONCLUSIONS: Polysaccharides form A. mexicana presented a complement fixation effect. The complement system is an important part of the immune defense, and compounds acting on the cascade are of interest. Therefore, these polymers may be useful as immunodulatory agents.


Assuntos
Antimaláricos , Argemone , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Arabinose , Argemone/química , Proteínas do Sistema Complemento , Galactose , Humanos , Mali , Monossacarídeos , Polímeros , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Ramnose
2.
Malar J ; 17(1): 68, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402267

RESUMO

BACKGROUND: Plasmodium falciparum malaria is still one of the most deadly pathology worldwide. Efficient treatment is jeopardized by parasite resistance to artemisinin and its derivatives, and by poor access to treatment in endemic regions. Anti-malarial traditional remedies still offer new tracks for identifying promising antiplasmodial molecules, and a way to ensure that all people have access to care. The present study aims to validate the traditional use of Terminalia macroptera, a Malian plant used in traditional medicine. METHODS: Terminalia macroptera was collected in Mali. Leaves (TML) and roots ethanolic extracts (TMR) were prepared and tested at 2000 mg/kg for in vivo acute toxicity in Albino Swiss mice. Antiplasmodial activity of the extracts was assessed against a chloroquine resistant strain P. falciparum (FcB1) in vitro. In vivo, anti-malarial efficacy was assessed by a 4-day suppressive test at 100 mg/kg in two malaria murine models of uncomplicated malaria (Plasmodium chabaudi chabaudi infection) and cerebral malaria (Plasmodium berghei strain ANKA infection). Constituents of TMR were characterized by ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation pattern. RESULTS: Lethal dose of TML and TMR were greater than 2000 mg/kg in Albino Swiss mice. According to the OECD's Globally Harmonized System of Classification, both extracts are non-toxic orally. Antiplasmodial activity of T. macroptera extracts was confirmed in vitro against P. falciparum FcB1 strain with IC50 values of 1.2 and 1.6 µg/mL for TML and TMR, respectively. In vivo, oral administration of TML and TMR induced significant reduction of parasitaemia (37.2 and 46.4% respectively) in P. chabaudi chabaudi infected mice at the 7th day of infection compared to untreated mice. In the cerebral malaria experimental model, mice treated with TMR and TML presented respectively 50 and 66.7% survival rates at day 9 post-infection when all untreated mice died. Eleven major compounds were found in TMR. Among them, several molecules already known could be responsible for the antiplasmodial activity of the roots extract of T. macroptera. CONCLUSIONS: This study confirms both safety and anti-malarial activity of T. macroptera, thus validating its traditional use.


Assuntos
Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium chabaudi/efeitos dos fármacos , Terminalia/química , Animais , Feminino , Mali , Medicina Tradicional , Camundongos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Plantas Medicinais , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...