Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Clin Med ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610889

RESUMO

Background: In pregnant women, COVID-19 can alter the metabolic environment, cell metabolism, and oxygen supply of trophoblastic cells and, therefore, have a negative influence on essential mechanisms of fetal development. The purpose of this study was to investigate, for the first time, the effects of COVID-19 infection during pregnancy with regard to the bone turnover and endocrine function of several metabolic biomarkers in colostrum and placenta. Methods: One hundred and twenty-four pregnant mothers were recruited from three hospitals between June 2020 and August 2021 and assigned to two groups: Control group and COVID-19 group. Metabolism biomarkers were addressed in placental tissue and colostrum. Results: Lipocalin-2 and resistin levels were higher in the placenta, revealing an underlying pro-inflammatory status in the gestation period for mothers suffering from COVID-19; a decrease in GLP-1 and leptin was also observed in this group. As for adiponectin, resistin, and insulin, their concentrations showed an increase; a decrease in GLP-1, leptin, and PYY was also reported in the colostrum of mothers suffering from COVID-19 compared with the control group. Conclusions: As for bone turnover, placental samples from mothers with COVID-19 showed lower levels of OPG, while DKK-1 increased compared with the control group. Colostrum samples showed higher levels of OPG, SOST, and PTH in the COVID-19 group, a fact that could have noteworthy implications for energy metabolism, fetal skeletal development, and postnatal bone density and mineralization. Further research is needed to explain the pathogenic mechanism of COVID-19 that may affect pregnancy, so as to assess the short-term and long-term outcomes in infants' health.

2.
Clin Nutr ; 43(4): 936-942, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38422951

RESUMO

BACKGROUND & AIMS: Regular and planned physical activity can diminish the risk of numerous illnesses. However, school children and teenagers often exercise intermittently and for brief periods, restricting potential benefits. Furthermore, previous studies mainly focused on body composition, without providing molecular mechanisms elucidating the role of physical activity in muscle tissue and inflammatory signalling. The objective of this study was to determine the effect of a vigorous physical activity intervention on endocrine muscle function and cytokine output in children. METHODS: 103 boys were divided into two groups: control (n = 51, did not perform additional physical activity) and exercise (n = 52, performed vigorous physical activity). Body composition measurements, endocrine muscle function and inflammatory signalling biomarkers were assessed at enrolment and after 6 months of intervention. RESULTS: No statistical significance was found for fractalkine, oncostatin, EGF, TNF-α and eotaxin. However, LIF, FBAP3, IL-6, FGF21 and IL-15 increased in the exercise group at the end of the protocol, though myostatin got decreased. In contrast, IFN-γ was increased in the exercise group at the beginning and end of the exercise protocol, IL-10 was also increased in this group, IL-1α decreased in the exercise group before and after the exercise protocol, and IP-10 and MCP-1 also decreased in the exercise group. CONCLUSION: It can be affirmed that a physical activity programme for boys was shown to produce changes in body composition (decreased fat mass, increased lean mass) and in markers of endocrine muscle function and cytokine release. It is possible that these changes, if sustained, could reduce the risk of chronic disease.


Assuntos
Exercício Físico , Músculo Esquelético , Adolescente , Criança , Humanos , Masculino , Citocinas , Fator de Necrose Tumoral alfa , Biomarcadores
3.
J Physiol ; 601(24): 5617-5633, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994192

RESUMO

Binge drinking (BD) is the most common alcohol consumption model for adolescents, and has recently been related to the generation of high oxidation and insulin resistance (IR). White adipose tissue (WAT) is a target organ for insulin action that regulates whole-body metabolism by secreting adipokines. The present study aimed to analyse the oxidative, inflammatory, energetic and endocrine profile in the WAT of BD-exposed adolescent rats, to obtain an integrative view of insulin secretion and WAT in IR progression. Two groups of male adolescent rats were used: control (n = 8) and BD (n = 8). An intermittent i.p. BD model (20% v/v) was used during 3 consecutive weeks. BD exposure led to a pancreatic oxidative imbalance, which was joint to high insulin secretion by augmenting deacetylase sirtuin-1 (SIRT-1) pancreatic expression and serum adipsin levels. However, BD rats had hyperglycaemia and high homeostasis model assessment of insulin resistance value (HOMA-IR). BD exposure in WAT increased lipid oxidation, as well as decreased insulin receptor substrate 1 (IRS-1) and AKT expression, sterol regulatory element-binding protein 1 (SREBP1), forkhead box O3A (FOXO3a) and peroxisome proliferator-activated receptor γ (PPARγ), and adipocyte size. BD also affected the expression of proteins related to energy balance, such as SIRT-1 and AMP activated protein kinase (AMPK), affecting the adipokine secretion profile (increasing resistin/adiponectin ratio). BD altered the entire serum lipid profile, increasing the concentration of free fatty acids. In conclusion, BD led to an oxidative imbalance and IR process in WAT, which modified the energy balance in this tissue, decreasing the WAT lipogenic/lipolytic ratio, affecting adipokine secretion and the systemic lipid profile, and contributing to the progression of IR. Therefore, WAT is key in the generation of metabolic and endocrine disruption after BD exposure during adolescence in rats. KEY POINTS: Adolescent rat binge drinking (BD) exposure leads to hepatic and systemic oxidative stress (OS) via reactive oxygen species generation, causing hepatic insulin resistance (IR) and altered energy metabolism. In the present study, BD exposure in adolescent rats induces OS in the pancreas, with increased insulin secretion despite hyperglycaemia, indicating a role for IR in white adipose tissue (WAT) homeostasis. In WAT, BD produces IR and an oxidative and energetic imbalance, triggering an intense lipolysis where the serum lipid profile is altered and free fatty acids are increased, consistent with liver lipid accumulation and steatosis. BD exposure heightens inflammation in WAT, elevating pro-inflammatory and reducing anti-inflammatory adipokines, favouring cardiovascular damage. This research provides a comprehensive view of how adolescent BD in rats impacts liver, WAT and pancreas homeostasis, posing a risk for future cardiometabolic complications in adulthood.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Fígado Gorduroso , Hiperglicemia , Resistência à Insulina , Ratos , Masculino , Animais , Ácidos Graxos não Esterificados/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Tecido Adiposo/metabolismo , Adipocinas/metabolismo , Fígado Gorduroso/metabolismo , Tecido Adiposo Branco/metabolismo , Etanol/metabolismo , Hiperglicemia/metabolismo , Homeostase , Estresse Oxidativo
4.
Nutrients ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37960310

RESUMO

Endocrine disrupting chemicals (EDCs) are exogenous substances widely disseminated both in the environment and in daily-life products which can interfere with the regulation and function of the endocrine system. These substances have gradually entered the food chain, being frequently found in human blood and urine samples. This becomes a particularly serious issue when they reach vulnerable populations such as pregnant women, whose hormones are more unstable and vulnerable to EDCs. The proper formation and activity of the placenta, and therefore embryonic development, may get seriously affected by the presence of these chemicals, augmenting the risk of several pregnancy complications, including intrauterine growth restriction, preterm birth, preeclampsia, and gestational diabetes mellitus, among others. Additionally, some of them also exert a detrimental impact on fertility, thus hindering the reproductive process from the beginning. In several cases, EDCs even induce cross-generational effects, inherited by future generations through epigenetic mechanisms. These are the reasons why a proper understanding of the reproductive and gestational alterations derived from these substances is needed, along with efforts to establish regulations and preventive measures in order to avoid exposition (especially during this particular stage of life).


Assuntos
Diabetes Gestacional , Disruptores Endócrinos , Nascimento Prematuro , Gravidez , Humanos , Recém-Nascido , Feminino , Disruptores Endócrinos/efeitos adversos , Resultado da Gravidez , Placenta
5.
J. physiol. biochem ; 79(4): 799 - 810, nov. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-227553

RESUMO

Binge drinking (BD) is an especially pro-oxidant model of alcohol consumption, mainly used by adolescents. It has recently been related to the hepatic IR-process. Skeletal muscle is known to be involved in insulin action and modulation through myokine secretion. However, there is no information on muscle metabolism and myokine secretion after BD exposure in adolescents. Two experimental groups of adolescent rats have been used: control and BD-exposed one. Oxidative balance, energy status and lipid, and protein metabolism have been analyzed in muscle, together with myokine serum levels (IL-6, myostatin, LIF, IL-5, fractalkine, FGF21, irisin, BDNF, FSTL1, apelin, FABP3, osteocrin, osteonectin (SPARC), and oncostatin). In muscle, BD affects the antioxidant enzyme balance leading to lipid and protein oxidation. Besides, it also increases the activation of AMPK and thus contributes to decrease SREBP1 and pmTOR and to increase FOXO3a expressions, promoting lipid and protein degradation. These alterations deeply affect the myokine secretion pattern. This is the first study to examine a general myokine response after exposure to BD. BD not only caused a detrimental imbalance in myokines related to muscle turnover, decreased those contributing to increase IR-process, decreased FST-1 and apelin and their cardioprotective function but also reduced the neuroprotective BDNF. Consequently, BD leads to an important metabolic and energetic disequilibrium in skeletal muscle, which contributes to exacerbate a general IR-process. (AU)


Assuntos
Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , /metabolismo , Apelina/metabolismo , Etanol , Lipídeos , Músculo Esquelético/metabolismo , Estresse Oxidativo
6.
J Physiol Biochem ; 79(4): 799-810, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676577

RESUMO

Binge drinking (BD) is an especially pro-oxidant model of alcohol consumption, mainly used by adolescents. It has recently been related to the hepatic IR-process. Skeletal muscle is known to be involved in insulin action and modulation through myokine secretion. However, there is no information on muscle metabolism and myokine secretion after BD exposure in adolescents. Two experimental groups of adolescent rats have been used: control and BD-exposed one. Oxidative balance, energy status and lipid, and protein metabolism have been analyzed in muscle, together with myokine serum levels (IL-6, myostatin, LIF, IL-5, fractalkine, FGF21, irisin, BDNF, FSTL1, apelin, FABP3, osteocrin, osteonectin (SPARC), and oncostatin). In muscle, BD affects the antioxidant enzyme balance leading to lipid and protein oxidation. Besides, it also increases the activation of AMPK and thus contributes to decrease SREBP1 and pmTOR and to increase FOXO3a expressions, promoting lipid and protein degradation. These alterations deeply affect the myokine secretion pattern. This is the first study to examine a general myokine response after exposure to BD. BD not only caused a detrimental imbalance in myokines related to muscle turnover, decreased those contributing to increase IR-process, decreased FST-1 and apelin and their cardioprotective function but also reduced the neuroprotective BDNF. Consequently, BD leads to an important metabolic and energetic disequilibrium in skeletal muscle, which contributes to exacerbate a general IR-process.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Fator Neurotrófico Derivado do Encéfalo , Ratos , Animais , Apelina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Músculo Esquelético/metabolismo , Etanol , Estresse Oxidativo , Lipídeos
7.
Antioxidants (Basel) ; 12(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371923

RESUMO

The benefits of physical exercise on health are diminished when it is non-planned, strenuous, or vigorous, which causes an increase in oxygen consumption and production of free radicals, particularly serious at the muscular level. Ubiquinol could help achieve an antioxidant, anti-inflammatory, and ergogenic effect. The aim of this study is to evaluate whether a supplementation of ubiquinol during a short period could have a positive effect on muscle aggression, physical performance, and fatigue perception in non-elite athletes after high intensity circuit weight training. One hundred healthy and well-trained men, (firemen of the Fire Department of Granada) were enrolled in a placebo-controlled, double-blinded, and randomized study, and separated into two groups: the placebo group (PG, n = 50); and the ubiquinol group (UG, n = 50), supplemented with an oral dose. Before and after the intervention, data related to the number of repetitions, muscle strength, and perceived exertion, as well as blood samples were collected. An increase was observed in the UG regarding average load and repetitions, revealing an improvement in muscle performance. Ubiquinol supplementation also reduced muscle damage markers, showing a protective effect on muscle fibers. Therefore, this study provides evidence that ubiquinol supplementation improves muscle performance and prevents muscle damage after strenuous exercise in a population of well-trained individuals who are not elite athletes.

8.
Antioxidants (Basel) ; 12(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37237970

RESUMO

Since the coronavirus disease 2019 (COVID-19) pandemic appeared, both governments and the scientific community have focused their efforts on the search for prophylactic and therapeutic alternatives in order to reduce its effects. Vaccines against SARS-CoV-2 have been approved and administered, playing a key role in the overcoming of this situation. However, they have not reached the whole world population, and several doses will be needed in the future in order to successfully protect individuals. The disease is still here, so other strategies should be explored with the aim of supporting the immune system before and during the infection. An adequate diet is certainly associated with an optimal inflammatory and oxidative stress status, as poor levels of different nutrients could be related to altered immune responses and, consequently, an augmented susceptibility to infections and severe outcomes derived from them. Minerals exert a wide range of immune-modulatory, anti-inflammatory, antimicrobial, and antioxidant activities, which may be useful for fighting this illness. Although they cannot be considered as a definitive therapeutic solution, the available evidence to date, obtained from studies on similar respiratory diseases, might reflect the rationality of deeper investigations of the use of minerals during this pandemic.

9.
Diagnostics (Basel) ; 13(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37174902

RESUMO

BACKGROUND: Obesity and being overweight have become one of the world's most severe health issues, not only because of the pathology but also because of the development of related comorbidities. Even when children reach adulthood, the mother's environment during pregnancy has been found to have a significant impact on obesity prevention in children. Thus, both maternal dietary habits and other factors such as gestational diabetes mellitus, excessive weight gain during pregnancy, smoking, or endocrine factors, among others, could influence newborn growth, adiposity, and body composition at birth, in childhood and adolescence, hence programming health in adulthood. METHODS: The aim of this review is to analyze the most recent human studies on the programming of fetal adipose tissue to determine which modifiable factors may influence adiposity and thus prevent specific disorders later in life by means of a bibliographic review of articles related to the subject over the last ten years. CONCLUSIONS: The importance of a healthy diet and lifestyle not only during pregnancy and the first months of life but also throughout childhood, especially during the first two years of life as this is a period of great plasticity, where the foundations for optimal health in later life will be laid, preventing the emergence of noncommunicable diseases including obesity, diabetes mellitus type 2, hypertension, being overweight, and any other pathology linked to metabolic syndrome, which is so prevalent today, through health programs beginning at a young age.

11.
Nutrients ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079831

RESUMO

Adolescence is a period of intense growth and endocrine changes, and obesity and insulin-resistance processes during this period have lately been rising. Selenium (Se) homeostasis is related to lipid metabolism depending on the form and dose of Se. This study tests the actions of low-dose selenite and Se nanoparticles (SeNPs) on white (WAT) and brown adipose tissue (BAT) deposition, insulin secretion, and GPx1, IRS-1 and FOXO3a expression in the WAT of adolescent rats as regards oxidative stress, adipocyte length and adipokine secretion. Four groups of male adolescent rats were treated: control (C), low selenite supplementation (S), low SeNP supplementation (NS) and moderate SeNP supplementation (NSS). Supplementation was received orally through water intake; NS and NSS rats received two- and tenfold more Se than C animals, respectively. SeNPs were obtained by reducing Se tetrachloride in the presence of ascorbic acid. For the first time in vivo, it was demonstrated that low selenite supplementation contributed to increased adipogenesis via the insulin signaling pathway and LCN2 modulation, while low SeNP administration prevented fat depots in WAT via the decrease in insulin signaling and FOXO3a autophagy in WAT, lowering inflammation. These effects were independent of GPx1 expression or activity in WAT. These findings provide data for dietary approaches to prevent obesity and/or anorexia during adolescence. These findings may be relevant to future studies looking at a nutritional approach aimed at pre-venting obesity and/or anorexia in adolescence.


Assuntos
Nanopartículas , Selênio , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Anorexia/metabolismo , Dieta Hiperlipídica , Suplementos Nutricionais , Insulina/metabolismo , Secreção de Insulina , Masculino , Obesidade/metabolismo , Ratos , Ácido Selenioso/metabolismo , Selênio/metabolismo , Selênio/farmacologia
12.
J. physiol. biochem ; 78(3): 581–591, ago. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216153

RESUMO

COVID-19, an acute respiratory disease caused by SARS-CoV-2, has rapidly become a pandemic. On the other hand, obesity is also reaching dramatic dimensions and it is a risk factor for morbidity and premature mortality. Obesity has been linked to a high risk of serious-associated complications to COVID-19, due to the increased risk of concomitant chronic diseases, which highlights the health public relevance of the topic. Obese subjects have a pro-inflammatory environment, which can further exacerbate COVID-19-induced inflammation and oxidative stress, explaining the increased risk of serious complications in these patients. Another factor that favors infection in obese patients is the high expression of ACE2 receptors in the adipose tissue. The negative impact of COVID-19 in obesity is also associated with a decrease in respiratory function, the concurrence of multiple comorbidities, a low-degree chronic inflammatory state, immunocompromised situation, and therefore a higher rate of hospitalization, mechanical ventilation, in-hospital complications such as pneumonia, and death. In this review, the link between obesity and COVID-19 was analyzed, exploring the potential common mechanisms in both diseases, with special attention to oxidative stress and inflammation, due to the crucial role of both pathways in the development of the disease. (AU)


Assuntos
Humanos , Pandemias , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/complicações , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Obesidade/complicações , Estresse Oxidativo
13.
J Physiol Biochem ; 78(3): 581-591, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35316507

RESUMO

COVID-19, an acute respiratory disease caused by SARS-CoV-2, has rapidly become a pandemic. On the other hand, obesity is also reaching dramatic dimensions and it is a risk factor for morbidity and premature mortality. Obesity has been linked to a high risk of serious-associated complications to COVID-19, due to the increased risk of concomitant chronic diseases, which highlights the health public relevance of the topic. Obese subjects have a pro-inflammatory environment, which can further exacerbate COVID-19-induced inflammation and oxidative stress, explaining the increased risk of serious complications in these patients. Another factor that favors infection in obese patients is the high expression of ACE2 receptors in the adipose tissue. The negative impact of COVID-19 in obesity is also associated with a decrease in respiratory function, the concurrence of multiple comorbidities, a low-degree chronic inflammatory state, immunocompromised situation, and therefore a higher rate of hospitalization, mechanical ventilation, in-hospital complications such as pneumonia, and death. In this review, the link between obesity and COVID-19 was analyzed, exploring the potential common mechanisms in both diseases, with special attention to oxidative stress and inflammation, due to the crucial role of both pathways in the development of the disease.


Assuntos
COVID-19 , COVID-19/complicações , Humanos , Inflamação , Obesidade/complicações , Estresse Oxidativo , SARS-CoV-2
14.
Antioxidants (Basel) ; 11(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204067

RESUMO

COVID-19 has reached pandemic proportions worldwide, with considerable consequences for both health and the economy. In pregnant women, COVID-19 can alter the metabolic environment, iron metabolism, and oxygen supply of trophoblastic cells, and therefore have a negative influence on essential mechanisms of fetal development. The purpose of this study was to investigate, for the first time, the effects of COVID-19 infection during pregnancy with regard to the oxidative/antioxidant status in mothers' serum and placenta, together with placental iron metabolism. Results showed no differences in superoxide dismutase activity and placental antioxidant capacity. However, antioxidant capacity decreased in the serum of infected mothers. Catalase activity decreased in the COVID-19 group, while an increase in 8-hydroxy-2'-deoxyguanosine, hydroperoxides, 15-FT-isoprostanes, and carbonyl groups were recorded in this group. Placental vitamin D, E, and Coenzyme-Q10 also showed to be increased in the COVID-19 group. As for iron-related proteins, an up-regulation of placental DMT1, ferroportin-1, and ferritin expression was recorded in infected women. Due to the potential role of iron metabolism and oxidative stress in placental function and complications, further research is needed to explain the pathogenic mechanism of COVID-19 that may affect pregnancy, so as to assess the short-term and long-term outcomes in mothers' and infants' health.

15.
J Sci Food Agric ; 102(3): 1114-1123, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34329496

RESUMO

BACKGROUND: Iron deficiency and iron overload can affect the normal functioning of the innate and adaptive immune responses. Fermented milk products may enhance immune functions, but little is known about the effect of fermented milks on modulation of the immune response during iron deficiency anemia and recovery with normal or high dietary iron intake. Eighty male Wistar rats were randomly assigned to a control group fed a standard diet or to an anemic group fed a diet deficit in iron. Control and anemic groups were fed for 30 days with diets based on a fermented goat's or cow's milk product, with normal iron content or iron overload. RESULTS: In general, during anemia recovery lectin and alternative complement pathway activity and lactoferrin decreased, because it improves iron homeostasis, which is critically important in immune system functions. Fermented goat's milk diet enhanced immune function during iron deficiency recovery, suppressed oxidant-induced eotaxin and fractalkine expression due to the concurrent reduction of free radical production and pro-inflammatory cytokines, and decreased monocyte chemoattractant protein-1 and monocyte migration and adhesion. The increase in interferon-γ can confer immunological colonization of gut microbiota and downregulate inflammation. CONCLUSION: Fermented goat's milk consumption enhances immune function, modifying complement pathway activity and decreasing pro-inflammatory cytokines as well as lactoferrin concentration, due to the improvement of iron homeostasis, which is critically important in the normal function of the immune system. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Anemia/dietoterapia , Produtos Fermentados do Leite/análise , Deficiências de Ferro/dietoterapia , Deficiências de Ferro/imunologia , Anemia/imunologia , Anemia/metabolismo , Animais , Bovinos , Feminino , Cabras , Humanos , Imunidade , Ferro/metabolismo , Deficiências de Ferro/metabolismo , Masculino , Ratos , Ratos Wistar
16.
Front Nutr ; 8: 761213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746212

RESUMO

Practicing exercise is one of the best strategies to promote well-being and quality of life, however physical activity in schoolchildren and adolescents is developed in an unpredictable, intermittent way and in short periods. There are relatively few intervention studies investigating the role of physical activity in schoolchildren endocrine function of adipose tissue and cognitive function. One hundred and three boys, divided into two groups: control (n = 51, did not perform additional physical activity) and exercise (n = 52, performed vigorous physical activity after the regular school classes). The exercise group, developed a 6 months physical activity protocol delivered by the physical education teacher during the second semester of the academic course (6 months). Body composition measurements, adherence to the Mediterranean diet, nutritional intake, hematological and biochemical parameters, endocrine function of the adipose tissue and biomarkers of brain molecular function were assessed at enrolment and after 6 months of intervention. No statistically significant differences between both groups were found for age, height and bone mass. Weight and BMI was lower in the exercise group compared to the control group, increasing lean mass and reducing fat mass. 58.68% of children in the exercise group showed high adherence to the Mediterranean Diet compared to 46.32% of the control group. The exercise group was more concerned about their diet consumed more fiber, vitamin B1, B2, B6, B12, D, Niacin, Folic acid, Fe, Zn, Se and Cu. Triglycerides levels and HDL-cholesterol were higher in the exercise group at the end of the study. Leptin, MCP-1, lipocalin-2, adipsin and PAI-1 levels were lower in the exercise group at the end of the exercise protocol. In contrast, adiponectin and osteocrin markedly increased in the exercise group. Moreover, marked increases were recorded in healthy brain state biomarkers (NGF, BDNF, and irisin) in the exercise group, which could have a positive impact on academic performance. Taken together, all the findings reported are consistent with many benefits of the exercise protocol on adipose tissue and brain molecular function, demonstrating the usefulness of early interventions based on physical activity in children to reduce risk factors related to sedentary lifestyle.

17.
Foods ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681491

RESUMO

Since 2020, the world has been immersed in a change in lifestyle (social, lifestyle, nutri-tion and physical activity patterns), due to the appearance of COVID-19 and the strict mobility measures which were implemented to prevent its spread. All these changes had a nutritional impact on people, modifying their dietary guidelines. This cross-sectional study was carried out to assess whether dietary habits, lifestyle, and adherence to the Mediterranean diet among the Spanish adult population (25-65 years old) during confinement was modified during the post-confinement period, using an e-survey through social networks, involving 510 subjects. A decrease in the intake of ultra-processed products, with a correlation between weekly food delivery orders at home and the consumption of salty snacks, sugary drinks, and processed pastries was also recorded. Most of the subjects performed physical exercise on a regular basis, maintaining the body weight in half of the participants. During the post-confinement period a substantial proportion of the population had healthy lifestyle and dietary habits, including the adequate consumption of fruits, vegetables and legumes; adequate time was spent preparing meals and the population did not regularly order food at home, which in the long term, reduced the risk of several diseases.

18.
Plants (Basel) ; 10(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451647

RESUMO

This study investigated the antimicrobial effects of a mouthwash containing propolis and the effect of a propolis paste formulation on dental healing after teeth extraction in patients with periodontal disease. In the mouthwash experience, the population comprised 40 patients, which were divided as follows: the control mouthwash, 0.2% chlorhexidine (v/v) mouthwash, 2% (w/v) propolis mouthwash, and propolis + chlorhexidine mouthwash. The study of the propolis paste comprised a population of 60 patients with periodontal disease, and a total of 120 symmetric tooth extractions were performed. Propolis showed antimicrobial activity by itself, and especially with the chlorhexidine association. Three days after surgery in the teeth treated with control paste, only 13.4% had completely healed; however, with propolis paste, in 90% of the periodontal sockets, healing was complete. In addition, a reduction in Streptococci mutans and Lactobacilli cfu was observed with propolis, and especially with the association of chlorhexidine + propolis. Propolis mouthwash reduced bacterial proliferation, especially in association with chlorhexidine. Propolis paste is a viable alternative for socket healing after dental extraction. The knowledge gained from these findings will provide a foundation for similar propolis therapies in order to improve the healing process after dental surgery.

19.
Nutr. hosp ; 38(3)may.-jun. 2021. tab
Artigo em Espanhol | IBECS | ID: ibc-224389

RESUMO

Introducción: el propóleo y sus componentes influyen en el metabolismo lipídico; sin embargo, se desconoce su efecto sobre la composición corporal y el metabolismo mineral. Objetivos: determinar el efecto de la suplementación de la dieta con propóleo natural sobre la composición corporal, el metabolismo basal y mineral, y la función endocrina del tejido adiposo. Material y métodos: veinte ratas albinas Wistar macho (8 semanas) se dividieron en dos grupos de 10 animales cada uno. Las ratas fueron alimentadas con dos tipos diferentes de dietas durante 90 días: una dieta estándar para el grupo de control (grupo C) y la misma dieta estándar + un 2 % de propóleo (grupo P). Se determinaron las hormonas tiroideas, la grelina, la leptina, la adiponectina y la insulina, los ácidos grasos no esterificados (AGNE) en el plasma, la composición corporal (masa magra, masa grasa y agua corporal) y el depósito de minerales en órganos diana (bazo, cerebro, corazón, pulmones, testículos, riñones y fémur). Resultados: los niveles plasmáticos de hormona estimulante del tiroides (TSH), triyodotironina (T3) y tiroxina (T4) no mostraron diferencias tras la ingesta del suplemento de propóleo, mientras que los de grelina y adiponectina disminuyeron (p < 0,01 y p < 0,05, respectivamente) y los de insulina (p < 0,01), leptina (p < 0,05) y AGNE (p < 0,05) aumentaron cuando la dieta se suplementó con propóleo al 2 %. Se redujeron el peso y la grasa corporal (p < 0,05), incrementándose la masa magra. Por último, el suplemento de propóleo mejoró el depósito de calcio en el bazo, los pulmones, los testículos y el fémur (p < 0,05). (AU)


Introduction: propolis and its components influence lipid metabolism; however, its effect on body composition and mineral metabolism remains unknown. Objectives: to determine the effect of natural propolis supplementation on body composition, mineral metabolism, and the endocrine function of adipose tissue. Material and methods: twenty albino male Wistar rats (8 weeks old) were divided into two groups of 10 animals each. The rats were fed two different types of diet for 90 days: a standard diet for the control group (group C) and the same standard diet + 2 % propolis (group P). Thyroid hormones, ghrelin, leptin, adiponectin and insulin, non-esterified fatty acids (NEFA) in plasma, body composition (lean mass, fat mass and body water), and mineral deposition in target organs (spleen, brain, heart, lungs, testicles, kidneys and femur) were assessed. Results: thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) did not show any differences after supplementation with propolis, while ghrelin and adiponectin decreased (p < 0.01 and p < 0.05, respectively) and insulin (p < 0.01), leptin (p < 0.05) and NEFA (p < 0.05) increased when 2 % propolis was supplied, while weight and body fat were reduced (p < 0.05) and lean mass increased. Lastly, the propolis supplement improves calcium deposition in the spleen, lungs, testes, and femur (p < 0.05). (AU)


Assuntos
Animais , Masculino , Ratos , Própole/farmacologia , Composição Corporal/efeitos dos fármacos , Glândulas Endócrinas/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Minerais/metabolismo , Ratos Wistar , Suplementos Nutricionais
20.
Nutr Hosp ; 38(3): 585-591, 2021 Jun 10.
Artigo em Espanhol | MEDLINE | ID: mdl-33666089

RESUMO

INTRODUCTION: Introduction: propolis and its components influence lipid metabolism; however, its effect on body composition and mineral metabolism remains unknown. Objectives: to determine the effect of natural propolis supplementation on body composition, mineral metabolism, and the endocrine function of adipose tissue. Material and methods: twenty albino male Wistar rats (8 weeks old) were divided into two groups of 10 animals each. The rats were fed two different types of diet for 90 days: a standard diet for the control group (group C) and the same standard diet + 2 % propolis (group P). Thyroid hormones, ghrelin, leptin, adiponectin and insulin, non-esterified fatty acids (NEFA) in plasma, body composition (lean mass, fat mass and body water), and mineral deposition in target organs (spleen, brain, heart, lungs, testicles, kidneys and femur) were assessed. Results: thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) did not show any differences after supplementation with propolis, while ghrelin and adiponectin decreased (p < 0.01 and p < 0.05, respectively) and insulin (p < 0.01), leptin (p < 0.05) and NEFA (p < 0.05) increased when 2 % propolis was supplied, while weight and body fat were reduced (p < 0.05) and lean mass increased. Lastly, the propolis supplement improves calcium deposition in the spleen, lungs, testes, and femur (p < 0.05). Conclusion: propolis supplementation of the diet (2 %) causes a decrease in the secretion of ghrelin and adiponectin, increasing the release of non-esterified fatty acids and the rate of insulin secretion. In addition, propolis supplementation induces an improvement in calcium deposition in target organs without affecting the rest of minerals, which improves body composition by inducing a reduction in weight and visceral adipose tissue, and improvement in lean mass.


INTRODUCCIÓN: Introducción: el propóleo y sus componentes influyen en el metabolismo lipídico; sin embargo, se desconoce su efecto sobre la composición corporal y el metabolismo mineral. Objetivos: determinar el efecto de la suplementación de la dieta con propóleo natural sobre la composición corporal, el metabolismo basal y mineral, y la función endocrina del tejido adiposo. Material y métodos: veinte ratas albinas Wistar macho (8 semanas) se dividieron en dos grupos de 10 animales cada uno. Las ratas fueron alimentadas con dos tipos diferentes de dietas durante 90 días: una dieta estándar para el grupo de control (grupo C) y la misma dieta estándar + un 2 % de propóleo (grupo P). Se determinaron las hormonas tiroideas, la grelina, la leptina, la adiponectina y la insulina, los ácidos grasos no esterificados (AGNE) en el plasma, la composición corporal (masa magra, masa grasa y agua corporal) y el depósito de minerales en órganos diana (bazo, cerebro, corazón, pulmones, testículos, riñones y fémur). Resultados: los niveles plasmáticos de hormona estimulante del tiroides (TSH), triyodotironina (T3) y tiroxina (T4) no mostraron diferencias tras la ingesta del suplemento de propóleo, mientras que los de grelina y adiponectina disminuyeron (p < 0,01 y p < 0,05, respectivamente) y los de insulina (p < 0,01), leptina (p < 0,05) y AGNE (p < 0,05) aumentaron cuando la dieta se suplementó con propóleo al 2 %. Se redujeron el peso y la grasa corporal (p < 0,05), incrementándose la masa magra. Por último, el suplemento de propóleo mejoró el depósito de calcio en el bazo, los pulmones, los testículos y el fémur (p < 0,05). Conclusión: el suplemento de propóleo al 2 % de la dieta produjo una disminución de la secreción de grelina y adiponectina, incrementando la concentración de AGNE y aumentando la tasa de secreción de insulina. Además, el suplemento de propóleo indujo una mejora del depósito de calcio en los órganos diana sin afectar al resto de minerales, lo que en conjunto mejora la composición corporal al inducir una reducción del peso y del tejido adiposo visceral, mejorando la masa magra.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/fisiologia , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Glândulas Endócrinas/efeitos dos fármacos , Glândulas Endócrinas/fisiologia , Minerais/metabolismo , Própole/farmacologia , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...