Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(7-8): 2131-2141, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36917275

RESUMO

The lethality of the COVID 19 pandemic became the trigger for one of the most meteoric races on record in the search for strategies of disease control. Those include development of rapid and sensitive diagnostic methods, therapies to treat severe cases, and development of anti-SARS-CoV-2 vaccines, the latter responsible for the current relative control of the disease. However, the commercially available vaccines are still far from conferring protection against acquiring the infection, so the development of more efficient vaccines that can cut the transmission of the variants of concerns that currently predominate and those that will emerge is a prevailing need. On the other hand, considering that COVID 19 is here to stay, the development of new diagnosis and treatment strategies is also desirable. In this sense, there has recently been a great interest in taking advantage of the benefits offered by extracellular vesicles (EVs), membrane structures of nanoscale size that carry information between cells participating in this manner in many physiological homeostatic and pathological processes. The interest has been focused on the fact that EVs are relatively easy to obtain and manipulate, allowing the design of natural nanocarriers that deliver molecules of interest, as well as the information about the pathogens, which can be exploited for the aforementioned purposes. Studies have shown that infection with SARS-CoV-2 induces the release of EVs from different sources, including platelets, and that their increase in blood, as well as some of their markers, could be used as a prognosis of disease severity. Likewise, EVs from different sources are being used as the ideal carriers for delivering active molecules and drugs to treat the disease, as well as vaccine antigens. In this review, we describe the progress that has been made in these three years of pandemic regarding the use of EVs for diagnosis, treatment, and vaccination against SARS-CoV-2 infection. KEY POINTS: • Covid-19 still requires more effective and specific treatments and vaccines. • The use of extracellular vesicles is emerging as an option with multiple advantages. • Association of EVs with COVID 19 and engineered EVs for its control are presented.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2 , Prognóstico , Vacinação
2.
Front Cell Infect Microbiol ; 12: 1018314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389143

RESUMO

Parasites release extracellular vesicles (EVs) which, in some cases, modulate the host's immune response contributing to the establishment of the infection. In this work we have isolated and characterized the EVs released by trophozoites of the human protozoan parasite Entamoeba histolytica, the causal agent of amoebiasis, when alone or in coculture with human neutrophils, and determined their effect on neutrophil NETs and ROS production. Nanoparticle tracking analysis showed that amoebic EVs are variable in size, ranging from less than 50 nm to nearly 600 nm in diameter (average of 167 nm), whereas neutrophil EVs are more uniform in size, with an average of 136 nm. In cocultures amoeba:neutrophil (1:100) most EVs are 98 nm in size, which is the typical size of exosomes. EVs from amoebae and neutrophils showed almost equal levels of ROS, which were considerably increased in EVs from cocultures. Uptake of amoebic EVs by neutrophils was demonstrated by fluorescence and resulted in a significant reduction in the oxidative burst and NET release triggered by PMA, ionophore A23187, or the amoebae itself used as stimuli. Interestingly, uptake of EVs from cocultures did not affect ROS production, but instead caused a greater delay in the onset of NETs release and in their quantity. A comparative proteomic analysis between the EVs of amoebae and neutrophils separately vs the cocultures showed a similar distribution of protein categories in the GO analysis, but differences in the expression and abundance of proteins such as the N-acetyl-D-galactosamine (GalNAc) inhibitable surface lectin and calreticulin in amoeba EVs, and various antimicrobial molecules in neutrophil EVs, such as lactoferrin and myeloperoxidase. These results highlight the importance of EVs in the immunomodulatory effects exerted by amoeba on human neutrophils.


Assuntos
Entamoeba histolytica , Vesículas Extracelulares , Animais , Humanos , Entamoeba histolytica/metabolismo , Neutrófilos , Explosão Respiratória , Trofozoítos , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Imunidade
3.
Antioxidants (Basel) ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34206992

RESUMO

NETosis is a neutrophil process involving sequential steps from pathogen detection to the release of DNA harboring antimicrobial proteins, including the central generation of NADPH oxidase dependent or independent ROS. Previously, we reported that NETosis triggered by Entamoeba histolytica trophozoites is independent of NADPH oxidase activity in neutrophils, but dependent on the viability of the parasites and no ROS source was identified. Here, we explored the possibility that E. histolytica trophozoites serve as the ROS source for NETosis. NET quantitation was performed using SYTOX® Green assay in the presence of selective inhibitors and scavengers. We observed that respiratory burst in neutrophils was inhibited by trophozoites in a dose dependent manner. Mitochondrial ROS was not also necessary, as the mitochondrial scavenger mitoTEMPO did not affect the process. Surprisingly, ROS-deficient amoebas obtained by pre-treatment with pyrocatechol were less likely to induce NETs. Additionally, we detected the presence of MPO on the cell surface of trophozoites after the interaction with neutrophils and found that luminol and isoluminol, intracellular and extracellular scavengers for MPO derived ROS reduced the amount of NET triggered by amoebas. These data suggest that ROS generated by trophozoites and processed by the extracellular MPO during the contact with neutrophils are required for E. histolytica induced NETosis.

4.
Planta Med ; 86(6): 425-433, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108930

RESUMO

Annona purpurea has been traditionally used by indigenous and socioeconomically disadvantaged people to treat infectious and parasitic diseases, including amoebiasis. The goal of this study was to assess the effect of a crude methanolic extract, an alkaloid extract, and aporphine alkaloids from leaves of A. purpurea on the viability of Entamoeba histolytica trophozoite cultures and to identify the mechanism of action. Different concentrations of the extracts and alkaloids purpureine (1: ), 3-hydroxyglaucine (2: ), norpurpureine (3: ) glaziovine (4: ), and oxopurpureine (5: ) were added to the cultures, and dead parasites were counted after 24 h using a tetrazolium dye reduction assay and analyzed by flow cytometry. The crude extract did not affect the viability of amoebae, but the alkaloid extract and the derived alkaloid glaziovine (4: ) had important anti-amoebic activity with an IC50 of 33.5 µM compared to that shown by metronidazole (6.8 µM). The treatments induced significant morphological changes in the trophozoites, and most parasites killed by the alkaloid extract were positive for Annexin V, suggesting that apoptosis was the main mechanism of action. In contrast, glaziovine (4: ) induced less apoptosis with more amoebic lysis. This study supports the idea that aporphine alkaloids from A. purpurea, mainly (+)-(R)-glaziovine (4: ), could contribute to the development of new formulations for the treatment of amoebiasis. In addition, X-ray diffraction structural analysis and complete 1H and 13C NMR assignments of (+)-(R)-glaziovine (4: ) were performed and reported for the first time.


Assuntos
Alcaloides , Annona , Aporfinas , Animais , Extratos Vegetais , Trofozoítos
5.
J Leukoc Biol ; 105(6): 1167-1181, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30913315

RESUMO

Amoebiasis is an infection of global importance, caused by the eukaryotic parasite Entamoeba histolytica. Pathogenic E. histolytica is associated worldwide with over a million cases of amoebic dysentery, colitis, and amoebic liver abscess. In contrast, the nonpathogenic Entamoeba dispar does not cause these diseases, although it is commonly found in the same areas as pathogenic amoeba. Entamoeba histolytica infection is usually associated with infiltrating neutrophils. These neutrophils appear to play a defensive role against this parasite, by mechanisms not completely understood. Recently, our group reported that neutrophil extracellular traps (NET) are produced in response to E. histolytica trophozoites. But, there is no information on whether nonpathogenic E. dispar can also induce NET formation. In this report, we explored the possibility that E. dispar leads to NET formation. Neutrophils were stimulated by E. histolytica trophozoites or by E. dispar trophozoites, and NET formation was assessed by video microscopy. NET induced by E. histolytica were important for trapping and killing amoebas. In contrast, E. dispar did not induce NET formation in any condition. Also E. dispar did not induce neutrophil degranulation or reactive oxygen species production. In addition, E. histolytica-induced NET formation required alive amoebas and it was inhibited by galactose, N-acetylgalactosamine, and lactose. These data show that only alive pathogenic E. histolytica activates neutrophils to produce NET, and suggest that recognition of the parasite involves a carbohydrate with an axial HO- group at carbon 4 of a hexose.


Assuntos
Degranulação Celular/imunologia , Entamoeba histolytica/imunologia , Armadilhas Extracelulares/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Trofozoítos/imunologia , Adulto , Feminino , Humanos , Masculino , Espécies Reativas de Oxigênio/imunologia
6.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30429239

RESUMO

Amoebiasis caused by the protozoan parasite Entamoeba histolytica remains a public health problem in developing countries, making the identification of new anti-amoebic compounds a continuing priority. Previously, we have shown that lactoferrin (Lf) and several Lf-derived peptides exhibit in vitro anti-amoebic activity independently of their iron-binding activity. Here, we evaluated the amoebicidal effect of synthetic Lf-derived peptides Lfcin-B, Lfcin 17-30, and Lfampin, analyzed the mechanism of death induced by the peptides and determined their therapeutic effects on murine intestinal amoebiasis. MTT assays in trophozoite cultures of E. histolytica exposed to each peptide (1-1000 µM) showed that Lfampin is far more amoebicidal than Lfcins. Lfampin killed 80% of trophozoites at doses higher than 100 µM in 24 h, and FACs analysis using Annexin V/propidium iodide showed that death occurred mainly by necrosis. In contrast, Lfcin-B and Lfcin 17-30 appeared to have no significant effect on amoebic viability. FACs and confocal microscopy analysis using FITC-labeled peptides showed that all three peptides are internalized by the amoeba mainly using receptor (PI3K signaling) and actin-dependent pathways but independent of clathrin. Docking studies identified cholesterol in the amoeba's plasma membrane as a possible target of Lfampin. Oral treatment of intracecally infected mice with the abovementioned peptides at 10 mg/kg for 4 days showed that Lfampin resolved 100% of the cases of intestinal amoebiasis, whereas Lfcin 17-30 and Lfcin-B were effective in resolving infection in 80 and 70% of cases, respectively. These data show that although synthetic bovine Lf-derived peptides exhibit varying amoebicidal potentials in vitro, they do resolve murine intestinal amoebiasis efficiently, suggesting that they may be useful as a therapeutic treatment.


Assuntos
Antiprotozoários/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Entamebíase/tratamento farmacológico , Lactoferrina/farmacologia , Necrose/tratamento farmacológico , Peptídeos/farmacologia , Trofozoítos/efeitos dos fármacos , Animais , Bovinos , Entamebíase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Fosfatidilinositol 3-Quinases/metabolismo
7.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30498092

RESUMO

Neutrophil extracellular traps (NETs) are DNA fibers associated with histones, enzymes from neutrophil granules and anti-microbial peptides. NETs are released in a process denominated NETosis, which involves sequential steps that culminate with the DNA extrusion. NETosis has been described as a new mechanism of innate immunity related to defense against different pathogens. The initial studies of NETs were carried out with bacteria and fungi, but currently a large variety of microorganisms capable of inducing NETs have been described including protozoan and helminth parasites. Nevertheless, we have little knowledge about how NETosis process is carried out in response to the parasites, and about its implication in the resolution of this kind of disease. In the best case, the NETs entrap and kill parasites in vitro, but in others, immobilize the parasites without affecting their viability. Moreover, insufficient studies on the NETs in animal models of infections that would help to define their role, and the association of NETs with chronic inflammatory pathologies such as those occurring in several parasitic infections have left open the possibility of NETs contributing to pathology instead of protection. In this review, we focus on the reported mechanisms that lead to NET release by protozoan and helminth parasites and the evidence that support the role of NETosis in the resolution or pathogenesis of parasitic diseases.


Assuntos
Coccidiose/imunologia , Entamebíase/imunologia , Infecções por Euglenozoa/imunologia , Armadilhas Extracelulares/imunologia , Infecções por Nematoides/imunologia , Neutrófilos/imunologia , Animais , Coccídios/imunologia , Coccídios/patogenicidade , Coccidiose/parasitologia , Entamoeba histolytica/imunologia , Entamoeba histolytica/patogenicidade , Entamebíase/parasitologia , Infecções por Euglenozoa/parasitologia , Armadilhas Extracelulares/química , Armadilhas Extracelulares/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata , Kinetoplastida/imunologia , Kinetoplastida/patogenicidade , Nematoides/imunologia , Nematoides/patogenicidade , Infecções por Nematoides/parasitologia , Neutrófilos/parasitologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-30023352

RESUMO

Amoebiasis, the disease caused by Entamoeba histolytica is the third leading cause of human deaths among parasite infections. E. histolytica was reported associated with around 100 million cases of amoebic dysentery, colitis and amoebic liver abscess that lead to almost 50,000 fatalities worldwide in 2010. E. histolytica infection is associated with the induction of inflammation characterized by a large number of infiltrating neutrophils. These neutrophils have been implicated in defense against this parasite, by mechanisms not completely described. The neutrophil antimicrobial mechanisms include phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs). Recently, our group reported that NETs are also produced in response to E. histolytica trophozoites. But, the mechanism for NETs induction remains unknown. In this report we explored the possibility that E. histolytica leads to NETs formation via a signaling pathway similar to the pathways activated by PMA or the Fc receptor FcγRIIIb. Neutrophils were stimulated by E. histolytica trophozoites and the effect of various pharmacological inhibitors on amoeba-induced NETs formation was assessed. Selective inhibitors of Raf, MEK, and NF-κB prevented E. histolytica-induced NET formation. In contrast, inhibitors of PKC, TAK1, and NADPH-oxidase did not block E. histolytica-induced NETs formation. E. histolytica induced phosphorylation of ERK in a Raf and MEK dependent manner. These data show that E. histolytica activates a signaling pathway to induce NETs formation, that involves Raf/MEK/ERK, but it is independent of PKC, TAK1, and reactive oxygen species (ROS). Thus, amoebas activate neutrophils via a different pathway from the pathways activated by PMA or the IgG receptor FcγRIIIb.


Assuntos
Entamoeba histolytica/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Armadilhas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Quinases raf/metabolismo , Humanos , Trofozoítos/imunologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-29922599

RESUMO

Neutrophil extracellular traps (NETs) are DNA fibers decorated with histones and antimicrobial proteins from cytoplasmic granules released into the extracellular space in a process denominated NETosis. The molecular pathways involved in NETosis have not been completely understood. Classical NETosis mechanisms involve the neutrophil elastase (NE) translocation to nucleus due to the generation of reactive oxygen species (ROS) by NADPH oxidase (NOX2) or the peptidyl arginine deiminase 4 (PAD4) activation in response to an increase in extracellular calcium influx; both mechanisms result in DNA decondensation. Previously, we reported that trophozoites and lipopeptidophosphoglycan from Entamoeba histolytica trigger NET release in human neutrophils. Here, we demonstrated in a quantitative manner that NETs were rapidly form upon treatment with amoebic trophozoites and involved both nuclear and mitochondrial DNA (mtDNA). NETs formation depended on amoeba viability as heat-inactivated or paraformaldehyde-fixed amoebas were not able to induce NETs. Interestingly, ROS were not detected in neutrophils during their interaction with amoebas, which could explain why NOX2 inhibition using apocynin did not affect this NETosis. Surprisingly, whereas calcium chelation reduced NET release induced by amoebas, PAD4 inhibition by GSK484 failed to block DNA extrusion but, as expected, abolished NETosis induced by the calcium ionophore A23187. Additionally, NE translocation to the nucleus and serine-protease activity were necessary for NET release caused by amoeba. These data support the idea that E. histolytica trophozoites trigger NETosis by a rapid non-classical mechanism and that different mechanisms of NETs release exist depending on the stimuli used.


Assuntos
Entamoeba histolytica/metabolismo , Entamebíase/metabolismo , Armadilhas Extracelulares/metabolismo , NADPH Oxidases/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trofozoítos/metabolismo , Acetofenonas/antagonistas & inibidores , Apoptose , Cálcio/metabolismo , DNA/efeitos dos fármacos , DNA/metabolismo , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Entamebíase/parasitologia , Armadilhas Extracelulares/parasitologia , Humanos , Elastase de Leucócito/metabolismo , Viabilidade Microbiana , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADPH Oxidases/efeitos dos fármacos , Necrose , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Oxirredução/efeitos dos fármacos , Peptidoglicano/metabolismo , Fosfolipídeos/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Inibidores de Serina Proteinase/metabolismo , Trofozoítos/genética
10.
PLoS One ; 11(7): e0158979, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27415627

RESUMO

Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of extracellular traps (NET). These networks of DNA are triggered by several immune and microbial factors, representing a defense strategy to prevent microbial spread by trapping/killing pathogens. This may be important against Entamoeba histolytica, since its large size hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not fixed trophozoites, induced NET formation in a time and dose dependent manner, starting at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG induce in vitro formation of human NETs, which did not affect the parasite growth unless a chelating agent was present. These results suggest that NETs may be an important factor of the innate immune response during infection with E. histolytica.


Assuntos
Entamoeba histolytica/fisiologia , Armadilhas Extracelulares/fisiologia , Neutrófilos/fisiologia , Peptidoglicano/farmacologia , Fosfolipídeos/farmacologia , Trofozoítos/fisiologia , Ácido Egtázico/farmacologia , Entamoeba histolytica/patogenicidade , Entamebíase/fisiopatologia , Armadilhas Extracelulares/efeitos dos fármacos , Imunofluorescência , Humanos , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...