Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39075183

RESUMO

The evaluation of the photocatalytic properties of electrospun TiO2 nanofibres (TiO2-NFs) synthesised in the same experimental conditions using two distinct precursors, tetraisopropyl orthotitanate (TTIP) and tetrabutyl orthotitanate (TNBT), with morphology and crystalline structure controlled by annealing at 460 °C for 3 h is presented. The presence of circular-shaped TiO2-NFs was corroborated by scanning electron microscopy (SEM). By using X-ray photoelectron spectroscopy (XPS), the chemical binding energies and their interactions of the TiO2 with the different incorporated impurities were determined; the most intense photoelectronic transitions of Ti 2p3/2 (458.39 eV), O 1 s (529.65 eV) and C 1 s (284.51 eV) were detected for TTIP and slightly blue-shifted for TNBT. By using energy-dispersive X-ray spectroscopy (EDS), the chemical element percentages in TiO2 were determined. Using X-ray diffraction, it was found that the annealed electrospun TiO2-NFs presented the anatase crystalline phase and confirmed by Raman scattering. Bandgap energies were determined by diffuse reflectance spectroscopy at room temperature. The photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide under exposure to ultraviolet light was studied using the TiO2-NFs obtained with the two molecular precursors. The results showed that the catalyst, prepared with the TTIP precursor, turned out to be the one that presented the highest photocatalytic activity with a half-life time (t1/2) of 28 min and a degradation percentage of 93%. The total organic carbon (TOC) in the solutions resulting from the 2,4-D degradation by the TiO2-NFs was measured, which showed a TOC removal of 50.67% for the TTIP sample and 36.14% for the TNBT sample. Finally, by using FTIR spectroscopy, the final chemical compounds of the degradation were identified as H2O and CO2.

2.
Plant Foods Hum Nutr ; 69(3): 268-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25069856

RESUMO

The objective of this study was to evaluate the stability of the fatty acids in avocado oil when the product is subjected to different conditions of electric field treatment (voltage: 5 kV cm(-1); frequency: 720 Hz; treatment time: 5, 10, 15, 20, and 25 min). Fatty acids were analyzed by Fourier transform infrared spectroscopy in the mid-infrared region. Electric field is a suitable method to preserve the oil quality and composition with minimal modifications in unsaturated fatty acids.


Assuntos
Eletricidade , Ácidos Graxos Insaturados/análise , Persea/química , Óleos de Plantas/química , Manipulação de Alimentos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA