Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731863

RESUMO

The maturation of B cells is a complex, multi-step process. During B cell differentiation, errors can occur, leading to the emergence of aberrant versions of B cells that, finally, constitute a malignant tumor. These B cell malignancies are classified into three main groups: leukemias, myelomas, and lymphomas, the latter being the most heterogeneous type. Since their discovery, multiple biological studies have been performed to characterize these diseases, aiming to define their specific features and determine potential biomarkers for diagnosis, stratification, and prognosis. The rise of advanced -omics approaches has significantly contributed to this end. Notably, proteomics strategies appear as promising tools to comprehensively profile the final molecular effector of these cells. In this narrative review, we first introduce the main B cell malignancies together with the most relevant proteomics approaches. Then, we describe the core studies conducted in the field and their main findings and, finally, we evaluate the advantages and drawbacks of flow cytometry, mass cytometry, and mass spectrometry for the profiling of human B cell disorders.


Assuntos
Linfócitos B , Neoplasias Hematológicas , Proteômica , Humanos , Proteômica/métodos , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/patologia , Linfócitos B/metabolismo , Biomarcadores Tumorais/metabolismo , Espectrometria de Massas/métodos , Citometria de Fluxo/métodos
2.
Proteomes ; 12(1)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535506

RESUMO

Ovarian cancer is one of the deadliest cancers in women. The lack of specific symptoms, especially at the initial stages of disease development, together with the malignancy heterogeneity, lower the life expectancy of patients. Aiming to improve survival rates, diagnostic and prognostic biomarkers are increasingly employed in clinics, providing gynecologists and oncologists with new tools to guide their treatment decisions. Despite the vast number of investigations, there is still an urgent need to discover more ovarian cancer subtype-specific markers which could further improve patient classification. To this end, high-throughput screening technologies, like mass spectrometry, are applied to deepen the tumoral cellular landscape and describe the malignant phenotypes. As for disease treatment, new targeted therapies, such as those based on PARP inhibitors, have shown great efficacy in destroying the tumoral cells. Likewise, drug-nanocarrier systems targeting the tumoral cells have exhibited promising results. In this narrative review, we summarize the latest achievements in the pursuit of biomarkers for ovarian cancer and recent anti-tumoral therapies.

3.
Comput Med Imaging Graph ; 113: 102343, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325245

RESUMO

Detection of abnormalities within the inner ear is a challenging task even for experienced clinicians. In this study, we propose an automated method for automatic abnormality detection to provide support for the diagnosis and clinical management of various otological disorders. We propose a framework for inner ear abnormality detection based on deep reinforcement learning for landmark detection which is trained uniquely in normative data. In our approach, we derive two abnormality measurements: Dimage and Uimage. The first measurement, Dimage, is based on the variability of the predicted configuration of a well-defined set of landmarks in a subspace formed by the point distribution model of the location of those landmarks in normative data. We create this subspace using Procrustes shape alignment and Principal Component Analysis projection. The second measurement, Uimage, represents the degree of hesitation of the agents when approaching the final location of the landmarks and is based on the distribution of the predicted Q-values of the model for the last ten states. Finally, we unify these measurements in a combined anomaly measurement called Cimage. We compare our method's performance with a 3D convolutional autoencoder technique for abnormality detection using the patch-based mean squared error between the original and the generated image as a basis for classifying abnormal versus normal anatomies. We compare both approaches and show that our method, based on deep reinforcement learning, shows better detection performance for abnormal anatomies on both an artificial and a real clinical CT dataset of various inner ear malformations with an increase of 11.2% of the area under the ROC curve. Our method also shows more robustness against the heterogeneous quality of the images in our dataset.


Assuntos
Orelha Interna , Orelha Interna/diagnóstico por imagem , Análise de Componente Principal , Curva ROC , Tomografia Computadorizada por Raios X
4.
Sci Immunol ; 9(91): eadj5948, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215192

RESUMO

Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.


Assuntos
Hipergamaglobulinemia , Transtornos Linfoproliferativos , Humanos , Apoptose/genética , Centro Germinativo , Transtornos Linfoproliferativos/genética , Serina-Treonina Quinases TOR
5.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003350

RESUMO

Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) are synthesized and characterized to assess their genotoxicity and transforming ability on human lung epithelial BEAS-2B cells in short- (48 h) and long-term (8 weeks) exposure scenarios. Initial short-term treatments show a dose-dependent increase in genotoxicity for MSNs-PEG-treated cells but not oxidative DNA damage for MSNs, MSNs-PEG, or for MSNs-GAL. In addition, after 8 weeks of continuous exposure, neither induced genotoxic nor oxidative DNA is observed. Nevertheless, long-term treatment with MSNs-PEG and MSNs-GAL, but not bare MSNs, induces cell transformation features, as evidenced by the cell's enhanced ability to grow independently of anchorage, to migrate, and to invade. Further, the secretome from cells treated with MSNs and MSNs-GAL, but not MSNs-PEG, shows certain tumor-promoting abilities, increasing the number and size of HeLa cell colonies formed in the indirect soft-agar assay. These results show that MSNs, specifically the functionalized ones, provoke some measurable adverse effects linked to tumorigenesis. These effects are in the order of other nanomaterials, such as carbon nanotubes or cerium dioxide nanoparticles, but they are lower than those provoked by some approved drugs, such as doxorubicin or dexamethasone.


Assuntos
Nanopartículas , Nanotubos de Carbono , Humanos , Células HeLa , Dióxido de Silício/toxicidade , Nanopartículas/toxicidade , Polietilenoglicóis , Porosidade
6.
Front Immunol ; 14: 1191992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275858

RESUMO

Introduction: Monitoring of innate myeloid cells (IMC) is broadly applied in basic and translational research, as well as in diagnostic patient care. Due to their immunophenotypic heterogeneity and biological plasticity, analysis of IMC populations typically requires large panels of markers. Currently, two cytometry-based techniques allow for the simultaneous detection of ≥40 markers: spectral flow cytometry (SFC) and mass cytometry (MC). However, little is known about the comparability of SFC and MC in studying IMC populations. Methods: We evaluated the performance of two SFC and MC panels, which contained 21 common markers, for the identification and subsetting of blood IMC populations. Based on unsupervised clustering analysis, we systematically identified 24 leukocyte populations, including 21 IMC subsets, regardless of the cytometry technique. Results: Overall, comparable results were observed between the two technologies regarding the relative distribution of these cell populations and the staining resolution of individual markers (Pearson's ρ=0.99 and 0.55, respectively). However, minor differences were observed between the two techniques regarding intra-measurement variability (median coefficient of variation of 42.5% vs. 68.0% in SFC and MC, respectively; p<0.0001) and reproducibility, which were most likely due to the significantly longer acquisition times (median 16 min vs. 159 min) and lower recovery rates (median 53.1% vs. 26.8%) associated with SFC vs. MC. Discussion: Altogether, our results show a good correlation between SFC and MC for the identification, enumeration and characterization of IMC in blood, based on large panels (>20) of antibody reagents.


Assuntos
Citometria de Fluxo , Células Mieloides , Citometria de Fluxo/métodos , Reprodutibilidade dos Testes , Humanos
7.
Chem Mater ; 35(11): 4412-4426, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332683

RESUMO

Development of bioinspired nanomotors showing effective propulsion and cargo delivery capabilities has attracted much attention in the last few years due to their potential use in biomedical applications. However, implementation of this technology in realistic settings is still a barely explored field. Herein, we report the design and application of a multifunctional gated Janus platinum-mesoporous silica nanomotor constituted of a propelling element (platinum nanodendrites) and a drug-loaded nanocontainer (mesoporous silica nanoparticle) capped with ficin enzyme modified with ß-cyclodextrins (ß-CD). The engineered nanomotor is designed to effectively disrupt bacterial biofilms via H2O2-induced self-propelled motion, ficin hydrolysis of the extracellular polymeric matrix (EPS) of the biofilm, and controlled pH-triggered cargo (vancomycin) delivery. The effective synergic antimicrobial activity of the nanomotor is demonstrated in the elimination of Staphylococcus aureus biofilms. The nanomotor achieves 82% of EPS biomass disruption and a 96% reduction in cell viability, which contrasts with a remarkably lower reduction in biofilm elimination when the components of the nanomotors are used separately at the same concentrations. Such a large reduction in biofilm biomass in S. aureus has never been achieved previously by any conventional therapy. The strategy proposed suggests that engineered nanomotors have great potential for the elimination of biofilms.

8.
Rev. Hosp. Ital. B. Aires (2004) ; 43(2): 64-71, jun. 2023. ilus, tab
Artigo em Espanhol | LILACS, UNISALUD, BINACIS | ID: biblio-1510556

RESUMO

Introducción: el servicio de Kinesiología del Hospital Italiano de Buenos Aires adoptó la virtualidad para la atención de pacientes durante la pandemia de COVID-19. Se decidió realizar una adaptación transcultural del cuestionario de 17 ítems validado al español de España Telemedicine Satisfaction and Usefulness Questionnaire (TSUQ) para conocer la satisfacción de los pacientes. Métodos: dos investigadores nativos realizaron una adaptación del cuestionario TSUQ al español rioplatense. Participaron pacientes atendidos entre mayo de 2021 y marzo de 2022 que habían realizado al menos cuatro sesiones de Tele-Rehabilitación (TR). Fue evaluada la correlación de la puntuación del instrumento resultante con la de un ítem agregado a modo de criterio externo concurrente. La validación del constructo fue llevada a cabo mediante sendos análisis factoriales exploratorios y confirmatorios. Resultados: obtuvimos 293 cuestionarios (media de edad 57 años, 64% sexo femenino). Luego de los resultados del AFE (Análisis factorial Exploratorio) (n = 101), consensuamos eliminar 5 ítems. El cuestionario resultante (12 ítems) fue luego validado en una nueva muestra (n = 192) a través de un AFC (Análisis factorial Confirmatorio). La fiabilidad compuesta, la varianza media extractada y la validez convergente fueron adecuadas, mientras que la validez discriminante fue escasa. Documentamos una moderada correlación (Spearman de 0,35, p < 0,0001) entre el puntaje total del cuestionario y el de la pregunta agregada como criterio externo concurrente de validación y una excelente correlación entre versiones. Conclusión: la versión abreviada del cuestionario TSUQ en español tiene propiedades psicométricas adecuadas, lo que lo vuelve un instrumento valioso para evaluar la satisfacción de los pacientes que realizan Tele-Rehabilitación. (AU)


Introduction: the Kinesiology service of the Hospital Italiano de Buenos Aires adopted virtuality for patient care during the COVID-19 pandemic. It was decided to make a cross-cultural adaptation of the 17-item Telemedicine Satisfaction and Usefulness Questionnaire (TSUQ) validated for Peninsular Spanish to assess patient satisfaction. Methods: two native researchers adapted the TSUQ questionnaire to Riplatense Spanish. The participants were patients seen between May 2021 and March 2022 who had undergone at least four sessions of TR. We evaluated the correlation between the resulting instrument score and that of an item added as a concurrent external criterion. Construct validation was done with exploratory and confirmatory factor analysis. Results: we obtained 293 questionnaires (mean age 57 years, 64% female). After the AFE results (n=101), we agreed on eliminating five items. The final questionnaire (12 items) was tested in a new sample (n=192) with a CEA. Composite reliability, mean-variance extracted, and convergent validity were adequate, whereas the discriminant accuracy was low. We documented a moderate correlation (Spearman of 0.35, p < 0.0001) between the total questionnaire score and the aggregate question score as a concurrent external validation criterion and an excellent correlation between versions. Conclusion: the abbreviated version of the TSUQ questionnaire in Spanish has suitable psychometric properties, which makes it a valuable instrument for evaluating patient satisfaction in persons undergoing Tele-Rehabilitation. (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Satisfação do Paciente , Telemedicina , Telerreabilitação , Satisfação Pessoal , Psicometria , Tradução , Comparação Transcultural , Inquéritos e Questionários , Reprodutibilidade dos Testes , Análise Fatorial , Cooperação e Adesão ao Tratamento
10.
Pharmaceutics ; 15(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986749

RESUMO

New lignohydroquinone conjugates (L-HQs) were designed and synthesized using the hybridization strategy, and evaluated as cytotoxics against several cancer cell lines. The L-HQs were obtained from the natural product podophyllotoxin and some semisynthetic terpenylnaphthohydroquinones, prepared from natural terpenoids. Both entities of the conjugates were connected through different aliphatic or aromatic linkers. Among the evaluated hybrids, the L-HQ with the aromatic spacer clearly displayed the in vitro dual cytotoxic effect derived from each starting component, retaining the selectivity and showing a high cytotoxicity at short (24 h) and long (72 h) incubation times (4.12 and 0.0450 µM, respectively) against colorectal cancer cells. In addition, the cell cycle blockade observed by flow cytometry studies, molecular dynamics, and tubulin interaction studies demonstrated the interest of this kind of hybrids, which docked adequately into the colchicine binding site of tubulin despite their large size. These results prove the validity of the hybridization strategy and encourage further research on non-lactonic cyclolignans.

11.
J Clin Med ; 11(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431117

RESUMO

The robust delineation of the cochlea and its inner structures combined with the detection of the electrode of a cochlear implant within these structures is essential for envisaging a safer, more individualized, routine image-guided cochlear implant therapy. We present Nautilus-a web-based research platform for automated pre- and post-implantation cochlear analysis. Nautilus delineates cochlear structures from pre-operative clinical CT images by combining deep learning and Bayesian inference approaches. It enables the extraction of electrode locations from a post-operative CT image using convolutional neural networks and geometrical inference. By fusing pre- and post-operative images, Nautilus is able to provide a set of personalized pre- and post-operative metrics that can serve the exploration of clinically relevant questions in cochlear implantation therapy. In addition, Nautilus embeds a self-assessment module providing a confidence rating on the outputs of its pipeline. We present a detailed accuracy and robustness analyses of the tool on a carefully designed dataset. The results of these analyses provide legitimate grounds for envisaging the implementation of image-guided cochlear implant practices into routine clinical workflows.

12.
Front Med (Lausanne) ; 9: 997305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237552

RESUMO

Mass spectrometry (MS)-based proteomics profiling has undoubtedly increased the knowledge about cellular processes and functions. However, its applicability for paucicellular sample analyses is currently limited. Although new approaches have been developed for single-cell studies, most of them have not (yet) been standardized and/or require highly specific (often home-built) devices, thereby limiting their broad implementation, particularly in non-specialized settings. To select an optimal MS-oriented proteomics approach applicable in translational research and clinical settings, we assessed 10 different sample preparation procedures in paucicellular samples of closely-related cell types. Particularly, five cell lysis protocols using different chemistries and mechanical forces were combined with two sample clean-up techniques (C18 filter- and SP3-based), followed by tandem mass tag (TMT)-based protein quantification. The evaluation was structured in three phases: first, cell lines from hematopoietic (THP-1) and non-hematopoietic (HT-29) origins were used to test the approaches showing the combination of a urea-based lysis buffer with the SP3 bead-based clean-up system as the best performer. Parameters such as reproducibility, accessibility, spatial distribution, ease of use, processing time and cost were considered. In the second phase, the performance of the method was tested on maturation-related cell populations: three different monocyte subsets from peripheral blood and, for the first time, macrophages/microglia (MAC) from glioblastoma samples, together with T cells from both tissues. The analysis of 50,000 cells down to only 2,500 cells revealed different protein expression profiles associated with the distinct cell populations. Accordingly, a closer relationship was observed between non-classical monocytes and MAC, with the latter showing the co-expression of M1 and M2 macrophage markers, although pro-tumoral and anti-inflammatory proteins were more represented. In the third phase, the results were validated by high-end spectral flow cytometry on paired monocyte/MAC samples to further determine the sensitivity of the MS approach selected. Finally, the feasibility of the method was proven in 194 additional samples corresponding to 38 different cell types, including cells from different tissue origins, cellular lineages, maturation stages and stimuli. In summary, we selected a reproducible, easy-to-implement sample preparation method for MS-based proteomic characterization of paucicellular samples, also applicable in the setting of functionally closely-related cell populations.

13.
Front Immunol ; 13: 935879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189252

RESUMO

Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual "expert-based") gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings.


Assuntos
Anticorpos , Células Mieloides , Anticoagulantes , Citometria de Fluxo , Humanos , Imunofenotipagem , Valores de Referência
14.
J Mater Chem B ; 10(36): 6983-6990, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36004753

RESUMO

The construction of a novel enzyme-controlled nanomachine with multiple release mechanisms for on-command delivery is described. This nanodevice was assembled by modifying mesoporous silica nanoparticles with 2-(benzo[d]thiazol-2-yl)phenyl 4-aminobenzoate moieties, and further capped with ß-cyclodextrin-modified glucose oxidase neoglycoenzyme. The device released the encapsulated payload in the presence of H2O2 and acidic media. The use of glucose as an input chemical signal also triggered cargo release through the enzymatic production of gluconic acid and hydrogen peroxide, and the subsequent disruption of the gating mechanism at the mesoporous surface. The nanodevice was successfully employed for the enzyme-controlled release of doxorubicin in HeLa cancer cells.


Assuntos
Glucose Oxidase , beta-Ciclodextrinas , Preparações de Ação Retardada , Doxorrubicina/farmacologia , Glucose , Humanos , Peróxido de Hidrogênio , Porosidade , Dióxido de Silício , para-Aminobenzoatos
15.
J Nanobiotechnology ; 20(1): 341, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858906

RESUMO

BACKGROUND: Nowadays, nanoparticles (NPs) have evolved as multifunctional systems combining different custom anchorages which opens a wide range of applications in biomedical research. Thus, their pharmacological involvements require more comprehensive analysis and novel nanodrugs should be characterized by both chemically and biological point of view. Within the wide variety of biocompatible nanosystems, iron oxide nanoparticles (IONPs) present mostly of the required features which make them suitable for multifunctional NPs with many biopharmaceutical applications. RESULTS: Cisplatin-IONPs and different functionalization stages have been broadly evaluated. The potential application of these nanodrugs in onco-therapies has been assessed by studying in vitro biocompatibility (interactions with environment) by proteomics characterization the determination of protein corona in different proximal fluids (human plasma, rabbit plasma and fetal bovine serum),. Moreover, protein labeling and LC-MS/MS analysis provided more than 4000 proteins de novo synthetized as consequence of the nanodrugs presence defending cell signaling in different tumor cell types (data available via ProteomeXchanges with identified PXD026615). Further in vivo studies have provided a more integrative view of the biopharmaceutical perspectives of IONPs. CONCLUSIONS: Pharmacological proteomic profile different behavior between species and different affinity of protein coating layers (soft and hard corona). Also, intracellular signaling exposed differences between tumor cell lines studied. First approaches in animal model reveal the potential of theses NPs as drug delivery vehicles and confirm cisplatin compounds as strengthened antitumoral agents.


Assuntos
Produtos Biológicos , Nanopartículas , Animais , Cromatografia Líquida , Cisplatino/farmacologia , Humanos , Modelos Animais , Nanopartículas/química , Proteômica , Coelhos , Soroalbumina Bovina , Espectrometria de Massas em Tandem
16.
Int J Nanomedicine ; 17: 409-422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115775

RESUMO

INTRODUCTION: Breast cancer has the highest mortality rate among cancers in women. Patients suffering from certain breast cancers, such as triple-negative breast cancer (TNBC), lack effective treatments. This represents a clinical concern due to the associated poor prognosis and high mortality. As an approach to succeed over conventional therapy limitations, we present herein the design and evaluation of a novel nanodevice based on enzyme-functionalized gold nanoparticles to efficiently perform enzyme prodrug therapy (EPT) in breast cancer cells. RESULTS: In particular, the enzyme horseradish peroxidase (HRP) - which oxidizes the prodrug indole-3-acetic acid (IAA) to release toxic oxidative species - is incorporated on gold nanoconjugates (HRP-AuNCs), obtaining an efficient nanoplatform for EPT. The nanodevice is biocompatible and effectively internalized by breast cancer cell lines. Remarkably, co-treatment with HRP-AuNCs and IAA (HRP-AuNCs/IAA) reduces the viability of breast cancer cells below 5%. Interestingly, 3D tumor models (multicellular tumor spheroid-like cultures) co-treated with HRP-AuNCs/IAA exhibit a 74% reduction of cell viability, whereas the free formulated components (HRP, IAA) have no effect. CONCLUSION: Altogether, our results demonstrate that the designed HRP-AuNCs nanoformulation shows a remarkable therapeutic performance. These findings might help to bypass the clinical limitations of current tumor enzyme therapies and advance towards the use of nanoformulations for EPT in breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Pró-Fármacos , Neoplasias da Mama/tratamento farmacológico , Terapia Enzimática , Feminino , Ouro , Peroxidase do Rábano Silvestre , Humanos , Nanoconjugados
17.
Biomolecules ; 11(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34944421

RESUMO

Human Proteome Project (HPP) presents a systematic characterization of the protein landscape under different conditions using several complementary-omic techniques (LC-MS/MS proteomics, affinity proteomics, transcriptomics, etc.). In the present study, using a B-cell lymphoma cell line as a model, comprehensive integration of RNA-Seq transcriptomics, MS/MS, and antibody-based affinity proteomics (combined with size-exclusion chromatography) (SEC-MAP) were performed to uncover correlations that could provide insights into protein dynamics at the intracellular level. Here, 5672 unique proteins were systematically identified by MS/MS analysis and subcellular protein extraction strategies (neXtProt release 2020-21, MS/MS data are available via ProteomeXchange with identifier PXD003939). Moreover, RNA deep sequencing analysis of this lymphoma B-cell line identified 19,518 expressed genes and 5707 protein coding genes (mapped to neXtProt). Among these data sets, 162 relevant proteins (targeted by 206 antibodies) were systematically analyzed by the SEC-MAP approach, providing information about PTMs, isoforms, protein complexes, and subcellular localization. Finally, a bioinformatic pipeline has been designed and developed for orthogonal integration of these high-content proteomics and transcriptomics datasets, which might be useful for comprehensive and global characterization of intracellular protein profiles.


Assuntos
Perfilação da Expressão Gênica/métodos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Proteômica/métodos , Linhagem Celular Tumoral , Cromatografia em Gel , Cromatografia Líquida , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise Serial de Proteínas , Análise de Sequência de RNA , Transdução de Sinais , Espectrometria de Massas em Tandem
18.
Nanoscale ; 13(44): 18616-18625, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34734589

RESUMO

This work describes the assembly of a novel enzyme-controlled nanomachine operated through an AND Boolean logic gate for on-command delivery. The nanodevice was constructed on Au-mesoporous silica Janus nanoparticles capped with a thiol-sensitive gate-like molecular ensemble on the mesoporous face and functionalized with glutathione reductase on the gold face. This autonomous nanomachine employed NADPH and glutathione disulfide as input chemical signals, leading to the enzymatic production of reduced glutathione that causes the disruption of the gating mechanism on the mesoporous face and the consequent payload release as an output signal. The nanodevice was successfully used for the autonomous release of doxorubicin in HeLa cancer cells and RAW 264.7 macrophage cells.


Assuntos
Nanopartículas , Dióxido de Silício , Doxorrubicina/farmacologia , Glutationa , Dissulfeto de Glutationa , Ouro , Humanos , Porosidade
19.
J Proteome Res ; 20(9): 4217-4230, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34328739

RESUMO

Nowadays, massive genomics and transcriptomics data can be generated at the single-cell level. However, proteomics in this setting is still a big challenge. Despite the great improvements in sensitivity and performance of mass spectrometry instruments and the better knowledge on sample preparation processing, it is widely acknowledged that multistep proteomics workflows may lead to substantial sample loss, especially when working with paucicellular samples. Still, in clinical fields, frequently limited sample amounts are available for downstream analysis, thereby hampering comprehensive characterization at protein level. To aim at better protein and peptide recoveries, we compare existing and novel approaches in the multistep sample preparation protocols for mass spectrometry studies, from sample collection, cell lysis, protein quantification, and electrophoresis/staining to protein digestion, peptide recovery, and LC-MS/MS instruments. From this critical evaluation, we conclude that the recent innovations and technologies, together with high quality management of samples, make proteomics on paucicellular samples possible, which will have immediate impact for the proteomics community.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Peptídeos , Fluxo de Trabalho
20.
Cancers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072782

RESUMO

Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis. Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response. Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to establish a systematic workflow based on NAPPArray to define differential aAb profiles between healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic (n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling the development and progression of sCRC. Our results showed aAb profile based on 141 TAA including TAAs associated with biological cellular processes altered in genesis and progress of sCRC (e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition, the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs (USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC ~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic and prognostic value in CRC. Additional prospective studies in larger series of patients are required to confirm the clinical utility of these novel sCRC immunomic biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...