Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 4(1): 26-31, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30592615

RESUMO

Optical pH sensors enable noninvasive monitoring of pH, yet in pure sensing terms, the potentiometric method of measuring pH is still vastly superior. Here, we report a full spectrometer-based optical pH sensor system consisting of sensor chemistry, hardware, and software that for the first time is capable of challenging the performance of an electrode-based pH meter in specific applications such as biopharmaceutical process monitoring and in single-use bioproduction. A highly photostable triangulenium fluorophore emitting at 590 nm was immobilized in an organically modified silicon matrix that allows for fast time-response by rapid diffusion of water in and out of the resulting composite polymer deposited on a polycarbonate substrate. Fluctuations from the fiber optical sensor hardware have been reduced by including a highly photostable terrylene-based reference dye emitting at 660 nm, thus enabling intensity-based ratiometric readouts. The dyes were excited by 505 nm light from a light emitting diode. The sensor was operational within a pH range of 4.6-7.6, and was characterized and demonstrated to have properties that are comparable to those of commercial pH electrodes considering time-response ( t90 < 90 s), precision (0.03 pH-units), and drift.


Assuntos
Corantes Fluorescentes/química , Fluorometria/métodos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Fenóis/química , Fluorometria/instrumentação , Concentração de Íons de Hidrogênio , Fibras Ópticas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA