Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 10: 242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075326

RESUMO

BACKGROUND: The organic acid producer Aspergillus oryzae and Rhizopus delemar are able to convert several alternative carbon sources to malic and fumaric acid. Thus, carbohydrate hydrolysates from lignocellulose separation are likely suitable as substrate for organic acid production with these fungi. RESULTS: Before lignocellulose hydrolysate fractions were tested as substrates, experiments with several mono- and disaccharides, possibly present in pretreated biomass, were conducted for their suitability for malic acid production with A. oryzae. This includes levoglucosan, glucose, galactose, mannose, arabinose, xylose, ribose, and cellobiose as well as cheap and easy available sugars, e.g., fructose and maltose. A. oryzae is able to convert every sugar investigated to malate, albeit with different yields. Based on the promising results from the pure sugar conversion experiments, fractions of the organosolv process from beechwood (Fagus sylvatica) and Miscanthus giganteus were further analyzed as carbon source for cultivation and fermentation with A. oryzae for malic acid and R. delemar for fumaric acid production. The highest malic acid concentration of 37.9 ± 2.6 g/L could be reached using beechwood cellulose fraction as carbon source in bioreactor fermentation with A. oryzae and 16.2 ± 0.2 g/L fumaric acid with R. delemar. CONCLUSIONS: We showed in this study that the range of convertible sugars for A. oryzae is even higher than known before. We approved the suitability of fiber/cellulose hydrolysate obtained from the organosolv process as carbon source for A. oryzae in shake flasks as well as in a small-scale bioreactor. The more challenging hemicellulose fraction of F. sylvatica was also positively evaluated for malic acid production with A. oryzae.

2.
Front Microbiol ; 7: 891, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445993

RESUMO

Synthesis gas (syngas) fermentation using acetogenic bacteria is an approach for production of bulk chemicals like acetate, ethanol, butanol, or 2,3-butandiol avoiding the fuel vs. food debate by using carbon monoxide, carbon dioxide, and hydrogen from gasification of biomass or industrial waste gases. Suffering from energetic limitations, yields of C4-molecules produced by syngas fermentation are quite low compared with ABE fermentation using sugars as a substrate. On the other hand, fungal production of malic acid has high yields of product per gram metabolized substrate but is currently limited to sugar containing substrates. In this study, it was possible to show that Aspergilus oryzae is able to produce malic acid using acetate as sole carbon source which is a main product of acetogenic syngas fermentation. Bioreactor cultivations were conducted in 2.5 L stirred tank reactors. During the syngas fermentation part of the sequential mixed culture, Clostridium ljungdahlii was grown in modified Tanner medium and sparged with 20 mL/min of artificial syngas mimicking a composition of clean syngas from entrained bed gasification of straw (32.5 vol-% CO, 32.5 vol-% H2, 16 vol-% CO2, and 19 vol-% N2) using a microsparger. Syngas consumption was monitored via automated gas chromatographic measurement of the off-gas. For the fungal fermentation part gas sparging was switched to 0.6 L/min of air and a standard sparger. Ammonia content of medium for syngas fermentation was reduced to 0.33 g/L NH4Cl to meet the requirements for fungal production of dicarboxylic acids. Malic acid production performance of A. oryzae in organic acid production medium and syngas medium with acetate as sole carbon source was verified and gave YP∕S values of 0.28 g/g and 0.37 g/g respectively. Growth and acetate formation of C. ljungdahlii during syngas fermentation were not affected by the reduced ammonia content and 66 % of the consumed syngas was converted to acetate. The overall conversion of CO and H2 into malic acid was calculated to be 3.5 g malic acid per mol of consumed syngas or 0.22 g malic acid per gram of syngas.

3.
Front Microbiol ; 7: 2059, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066378

RESUMO

Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar, both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar. For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...