Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11448, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454163

RESUMO

Sleep electroencephalogram (EEG) signals likely encode brain health information that may identify individuals at high risk for age-related brain diseases. Here, we evaluate the correlation of a previously proposed brain age biomarker, the "brain age index" (BAI), with cognitive test scores and use machine learning to develop and validate a series of new sleep EEG-based indices, termed "sleep cognitive indices" (SCIs), that are directly optimized to correlate with specific cognitive scores. Three overarching cognitive processes were examined: total, fluid (a measure of cognitive processes involved in reasoning-based problem solving and susceptible to aging and neuropathology), and crystallized cognition (a measure of cognitive processes involved in applying acquired knowledge toward problem-solving). We show that SCI decoded information about total cognition (Pearson's r = 0.37) and fluid cognition (Pearson's r = 0.56), while BAI correlated only with crystallized cognition (Pearson's r = - 0.25). Overall, these sleep EEG-derived biomarkers may provide accessible and clinically meaningful indicators of neurocognitive health.


Assuntos
Ondas Encefálicas , Sono , Humanos , Cognição , Resolução de Problemas , Encéfalo , Eletroencefalografia , Biomarcadores
2.
Sleep ; 45(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-34984446

RESUMO

STUDY OBJECTIVES: Alterations in sleep spindles have been linked to cognitive impairment. This finding has contributed to a growing interest in identifying sleep-based biomarkers of cognition and neurodegeneration, including sleep spindles. However, flexibility surrounding spindle definitions and algorithm parameter settings present a methodological challenge. The aim of this study was to characterize how spindle detection parameter settings influence the association between spindle features and cognition and to identify parameters with the strongest association with cognition. METHODS: Adult patients (n = 167, 49 ± 18 years) completed the NIH Toolbox Cognition Battery after undergoing overnight diagnostic polysomnography recordings for suspected sleep disorders. We explored 1000 combinations across seven parameters in Luna, an open-source spindle detector, and used four features of detected spindles (amplitude, density, duration, and peak frequency) to fit linear multiple regression models to predict cognitive scores. RESULTS: Spindle features (amplitude, density, duration, and mean frequency) were associated with the ability to predict raw fluid cognition scores (r = 0.503) and age-adjusted fluid cognition scores (r = 0.315) with the best spindle parameters. Fast spindle features generally showed better performance relative to slow spindle features. Spindle features weakly predicted total cognition and poorly predicted crystallized cognition regardless of parameter settings. CONCLUSIONS: Our exploration of spindle detection parameters identified optimal parameters for studies of fluid cognition and revealed the role of parameter interactions for both slow and fast spindles. Our findings support sleep spindles as a sleep-based biomarker of fluid cognition.


Assuntos
Eletroencefalografia , Transtornos do Sono-Vigília , Adulto , Cognição , Humanos , Polissonografia , Sono , Fases do Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA