Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 28(8): 725-736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37934281

RESUMO

In this study, a series of N-functionalized benzimidazole silver(I) complexes were prepared and characterized by FT-IR, 1H, 13C{1H} NMR spectroscopy, and elemental analysis. Synthesized N-benzylbenzimidazole silver(I) complexes were evaluated for their antimicrobial activities against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and the fungal strains Candida albicans and Candida glabrata. The results indicated that N-alkylbenzimidazole silver(I) complexes exhibited good antimicrobial activity compared to N-alkylbenzimidazole derivatives. Especially, complex 2e presented perfect antimicrobial activity than the other complexes. The characterized molecules were optimized by DFT-based calculation methods and the optimized molecules were analyzed in detail by molecular docking methods against bacterial DNA-gyrase and CYP51. The amino acid residues detected for both target molecules are consistent with expectations, and the calculated binding affinities and inhibition constants are promising for further studies. A series of N-alkylbenzimidazole silver(I) complexes were synthesized and fully characterized by means of 1H NMR, 13C NMR, and FT-IR spectroscopies. Synthesized N-alkylbenzimidazole silver(I) complexes were investigated for their antimicrobial activities against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and the fungal strains Candida albicans and Candida glabrata. All complexes showed better activity according to Ampicilin against Pseudomonas aeruginosa. The molecules which were firstly optimized by DFT-based calculation methods were also analyzed by molecular docking methods against DNA gyrase of E. Coli and CYP51. 338 × 190 mm (96 × 96 DPI).


Assuntos
Anti-Infecciosos , Prata , Prata/farmacologia , Prata/química , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Candida albicans , Bactérias , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Benzimidazóis/farmacologia , Benzimidazóis/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
3.
Funct Integr Genomics ; 22(3): 359-369, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35260975

RESUMO

Congenital diaphragmatic hernia (CDH) is an anomaly characterized by a defect in the diaphragm, leading to the passage of intra-abdominal organs into the thoracic cavity. Herein, the presented work analyzes the global gene expression profiles in nine CDH and one healthy newborn. All of the patients had left posterolateral (Bochdalek) diaphragmatic hernia, operated via an abdominal approach, and stomach and bowels in the thorax cavity. Some patients also had additional anomalies. A total of 560 differentially regulated genes were measured. Among them, 11 genes showed significant changes in expression associated with lung tissue, vascular structure development, and vitamin A metabolism, which are typical ontologies related to CDH etiology. Among them, SLC25A24 and RAB3IL1 are involved in angiogenesis, HIF1A and FOXC2-AS1 are related with the alveolus, MAGI2-AS3 is associated with the diaphragm, LHX4 and DHH are linked with the lung, and BRINP1, FZD9, WNT4, and BLOC1S1-RDH5 are involved in retinol. Besides, the expression levels of some previously claimed genes with CDH etiology also showed diverse expression patterns in different patients. All these indicated that CDH is a complex, multigenic anomaly, requiring holistic approaches for its elucidation.


Assuntos
Hérnias Diafragmáticas Congênitas , Diafragma , Perfilação da Expressão Gênica , Hérnias Diafragmáticas Congênitas/genética , Hérnias Diafragmáticas Congênitas/cirurgia , Humanos , Recém-Nascido , Análise em Microsséries , Proteínas do Tecido Nervoso
4.
Artigo em Inglês | MEDLINE | ID: mdl-31209012

RESUMO

There are only a few antifungal drugs used systemically in treatment, and invasive fungal infections that are resistant to these drugs are an emerging problem in health care. In this study, we performed a high-copy-number genomic DNA (gDNA) library screening to find and characterize genes that reduce susceptibility to amphotericin B, caspofungin, and voriconazole in Saccharomyces cerevisiae We identified the PDR16 and PMP3 genes for amphotericin B, the RMD9 and SWH1 genes for caspofungin, and the MRS3 and TRI1 genes for voriconazole. The deletion mutants for PDR16 and PMP3 were drug susceptible, but the other mutants had no apparent susceptibility. Quantitative-PCR analyses suggested that the corresponding drugs upregulated expression of the PDR16, PMP3, SWH1, and MRS3 genes. To further characterize these genes, we also profiled the global expression patterns of the cells after treatment with the antifungals and determined the genes and paths that were up- or downregulated. We also cloned Candida albicans homologs of the PDR16, PMP3, MRS3, and TRI1 genes and expressed them in S. cerevisiae Heterologous expression of Candida homologs also provided reduced drug susceptibility to the budding yeast cells. Our analyses suggest the involvement of new genes in antifungal drug resistance.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Caspofungina/farmacologia , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Voriconazol/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...