Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Zool ; 17: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021638

RESUMO

BACKGROUND: The astonishing variety of sounds that birds can produce has been the subject of many studies aiming to identify the underlying anatomical and physical mechanisms of sound production. An interesting feature of some bird vocalisations is the simultaneous production of two different frequencies. While most work has been focusing on songbirds, much less is known about dual-sound production in non-passerines, although their sound production organ, the syrinx, would technically allow many of them to produce "two voices". Here, we focus on the king penguin, a colonial seabird whose calls consist of two fundamental frequency bands and their respective harmonics. The calls are produced during courtship and for partner and offspring reunions and encode the birds' identity. We dissected, µCT-scanned and analysed the vocal tracts of six adult king penguins from Possession Island, Crozet Archipelago. RESULTS: King penguins possess a bronchial type syrinx that, similarly to the songbird's tracheobronchial syrinx, has two sets of vibratory tissues, and thus two separate sound sources. Left and right medial labium differ consistently in diameter between 0.5 and 3.2%, with no laterality between left and right side. The trachea has a conical shape, increasing in diameter from caudal to cranial by 16%. About 80% of the king penguins' trachea is medially divided by a septum consisting of soft elastic tissue (septum trachealis medialis). CONCLUSIONS: The king penguins' vocal tract appears to be mainly adapted to the life in a noisy colony of a species that relies on individual vocal recognition. The extent between the two voices encoding for individuality seems morphologically dictated by the length difference between left and right medial labium. The septum trachealis medialis might support this extent and could therefore be an important anatomical feature that aids in the individual recognition process.

2.
Front Neuroanat ; 13: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837847

RESUMO

The inherent complexity of brain tissue, with brain cells intertwining locally and projecting to distant regions, has made three-dimensional visualization of intact brains a highly desirable but challenging task in neuroscience. The natural opaqueness of tissue has traditionally limited researchers to techniques short of single cell resolution such as computer tomography or magnetic resonance imaging. By contrast, techniques with single-cell resolution required mechanical slicing into thin sections, which entails tissue distortions that severely hinder accurate reconstruction of large volumes. Recent developments in tissue clearing and light sheet microscopy have made it possible to investigate large volumes at micrometer resolution. The value of tissue clearing has been shown in a variety of tissue types and animal models. However, its potential for examining the songbird brain remains unexplored. Songbirds are an established model system for the study of vocal learning and sensorimotor control. They share with humans the capacity to adapt vocalizations based on auditory input. Song learning and production are controlled in songbirds by the song system, which forms a network of interconnected discrete brain nuclei. Here, we use the CUBIC and iDISCO+ protocols for clearing adult songbird brain tissue. Combined with light sheet imaging, we show the potential of tissue clearing for the investigation of connectivity between song nuclei, as well as for neuroanatomy and brain vasculature studies.

3.
Front Neuroanat ; 13: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766480

RESUMO

Expansion microscopy and light sheet imaging (ExLSM) provide a viable alternative to existing tissue clearing and large volume imaging approaches. The analysis of intact volumes of brain tissue presents a distinct challenge in neuroscience. Recent advances in tissue clearing and light sheet microscopy have re-addressed this challenge and blossomed into a plethora of protocols with diverse advantages and disadvantages. While refractive index matching achieves near perfect transparency and allows for imaging at large depths, the resolution of cleared brains is usually limited to the micrometer range. Moreover, the often long and harsh tissue clearing protocols hinder preservation of native fluorescence and antigenicity. Here we image large expanded brain volumes of zebra finch brain tissue in commercially available light sheet microscopes. Our expansion light sheet microscopy (ExLSM) approach presents a viable alternative to many clearing and imaging methods because it improves on tissue processing times, fluorophore compatibility, and image resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...