Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1779-1786, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37694461

RESUMO

To understand the responses of radial growth to climatic factors and the differences in ecological resilience to drought between a heliophilous species Larix principis-rupprechtii and a shade species Picea meyeri in mixed forests, we developed the tree-ring width chronologies of L. principis-rupprechtii and P. meyeri in three mixed forests based on the samples collected from Toudaogou of Saihanba in Hebei, Ningwu County and Kelan County in Shanxi Province. We analyzed the correlation between climatic factors and various chronologies and examined the differences in resistance (Rc), recovery (Rt), and resilience (Rs) of L. principis-rupprechtii and P. meyeri in response to drought stress. The results showed that the radial growth of L. principis-rupprechtii and P. meyeri was negatively correlated with the mean and maximum air temperature from May to July in three mixed forests, and was positively correlated with the Palmer drought index (PDSI) from May to September. Radial growth decline in trees due to drought stress was significantly different between the two species among the three sites, indicating different physiological and ecological regulation strategies. The resistance of P. meyeri was stronger than that of L. principis-rupprechtii at the three study sites, with stronger resilience and resilient elasticity of L. principis-rupprechtii than P. meyeri. As a result, P. meyeri exhibited greater drought resistance than L. principis-rupprechtii. Under global warming condition, L. principis-rupprechtii might be at greater risk of growth decline than P. meyeri in this region.


Assuntos
Larix , Picea , Secas , Resistência à Seca , Florestas , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...