Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 9: uhac047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531314

RESUMO

Plant transformation and regeneration remain highly species- and genotype-dependent. Conventional hormone-based plant regeneration via somatic embryogenesis or organogenesis is tedious, time-consuming, and requires specialized skills and experience. Over the last 40 years, significant advances have been made to elucidate the molecular mechanisms underlying embryogenesis and organogenesis. These pioneering studies have led to a better understanding of the key steps and factors involved in plant regeneration, resulting in the identification of crucial growth and developmental regulatory genes that can dramatically improve regeneration efficiency, shorten transformation time, and make transformation of recalcitrant genotypes possible. Co-opting these regulatory genes offers great potential to develop innovative genotype-independent genetic transformation methods for various plant species, including specialty crops. Further developing these approaches has the potential to result in plant transformation without the use of hormones, antibiotics, selectable marker genes, or tissue culture. As an enabling technology, the use of these regulatory genes has great potential to enable the application of advanced breeding technologies such as genetic engineering and gene editing for crop improvement in transformation-recalcitrant crops and cultivars. This review will discuss the recent advances in the use of regulatory genes in plant transformation and regeneration, and their potential to facilitate genotype-independent plant transformation and regeneration.

2.
Plant Physiol Biochem ; 50(1): 24-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22099516

RESUMO

Burkholderia phytofirmans strain PsJN is a highly effective plant-beneficial endophyte. We have used a combination of capillary electrophoresis and methylation-sensitive amplification length polymorphism (CE-MSAP) analysis to investigate the potato genomic DNA cytosine methylation changes that occur in response to PsJN bacterization. Six weeks after PsJN inoculation, over 6800 loci were identified and assessed in two in vitro grown potato varieties, the strongly-responsive Red Pontiac and the poorly-responsive Superior. Compared to non-bacterized control, bacterized Red Pontiac exhibited little change in the overall cytosine methylation, although methylation polymorphisms did occur. In contrast, poorly-responsive Superior exhibited significantly higher levels of overall cytosine methylation and a decrease in the number of non-methylated sites in the bacterized plants compared to controls. Superior had significantly higher DNA methylation and DNA hyper-methylation than Red Pontiac, suggesting that enhanced DNA loci methylation is involved in the suppression of PsJN-induced plant growth stimulation. Several DNA fragments, corresponding to different open reading frames exhibiting methylation polymorphisms in Red Pontiac or Superior were sequenced. Gene expression analysis of a subset of those genes was carried out using real time PCR. We identified several genes whose transcript levels were either enhanced or decreased in response to PsJN in a variety-specific way, as well as genes that were specifically enhanced in both varieties in response to the endophyte.


Assuntos
Burkholderia , Citosina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genes de Plantas , Solanum tuberosum/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Eletroforese , Endófitos , Genoma de Planta , Fases de Leitura Aberta , Polimorfismo Genético , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , Especificidade da Espécie
3.
J Econ Entomol ; 103(6): 2072-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21309227

RESUMO

Brown stink bug, Euschistus servus (Say) (Heteroptera: Pentatomidae), damage on developing corn, Zea mays L., ears was examined in 2005 and 2006 by using eight parameters related to its yield and kernel quality. Stink bug infestations were initiated when the corn plants were at tasseling (VT), mid-silking (R1), and blister (R2) stages by using zero, three, and six in 2005 or zero, one, two, and four bugs per ear in 2006, and maintained for 9 d. The percentage of discolored kernels was affected by stink bug number in both years, but not always affected by plant growth stage. The growth stage effect on the percentage of discolored kernels was significant in 2006, but not in 2005. The percentage of aborted kernels was affected by both stink bug number and plant growth stage in 2005 but not in 2006. Kernel weight was significantly reduced when three E. sercus adults were confined on a corn ear at stage VT or R1 for 9 d in 2005, whereas one or two adults per ear resulted in no kernel weight loss, but four E. servus adults did cause significant kernel weight loss at stage VT in 2006. Stink bug feeding injury at stage R2 did not affect kernel damage, ear weight or grain weight in either year. The infestation duration (9 or 18 d) was positively correlated to the percentage of discolored kernels but did not affect kernel or ear weight. Based on the regression equations between the kernel weight and stink bug number, the gain threshold or economic injury level should be 0.5 bugs per ear for 9 d at stage VT and less for stage R1. This information will be useful in developing management guidelines for stink bugs in field corn during ear formation and early grain filling stages.


Assuntos
Biomassa , Heterópteros/fisiologia , Interações Hospedeiro-Parasita , Zea mays/parasitologia , Animais , Topos Floridos/parasitologia , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA