Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 596(11): 2055-2075, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524231

RESUMO

KEY POINTS: The present study demonstrates, by in vitro and in vivo analyses, the novel concept that signal transmission between sympathetic neurons and the heart, underlying the physiological regulation of cardiac function, operates in a quasi-synaptic fashion. This is a result of the direct coupling between neurotransmitter releasing sites and effector cardiomyocyte membranes. ABSTRACT: Cardiac sympathetic neurons (SNs) finely tune the rate and strength of heart contractions to match blood demand, both at rest and during acute stress, through the release of noradrenaline (NE). Junctional sites at the interface between the two cell types have been observed, although whether direct neurocardiac coupling has a role in heart physiology has not been clearly demonstrated to date. We investigated the dynamics of SN/cardiomyocyte intercellular signalling, both by fluorescence resonance energy transfer-based imaging of cAMP in co-cultures, as a readout of cardiac ß-adrenergic receptor activation, and in vivo, using optogenetics in transgenic mice with SN-specific expression of Channelrhodopsin-2. We demonstrate that SNs and cardiomyocytes interact at specific sites in the human and rodent heart, as well as in co-cultures. Accordingly, neuronal activation elicited intracellular cAMP increases only in directly contacted myocytes and cell-cell coupling utilized a junctional extracellular signalling domain with an elevated NE concentration. In the living mouse, optogenetic activation of cardiac SNs innervating the sino-atrial node resulted in an instantaneous chronotropic effect, which shortened the heartbeat interval with single beat precision. Remarkably, inhibition of the optogenetically elicited chronotropic responses required a high dose of propranolol (20-50 mg kg-1 ), suggesting that sympathetic neurotransmission in the heart occurs at a locally elevated NE concentration. Our in vitro and in vivo data suggest that the control of cardiac function by SNs occurs via direct intercellular coupling as a result of the establishment of a specific junctional site.


Assuntos
Débito Cardíaco , Miócitos Cardíacos/fisiologia , Neurônios/fisiologia , Sistema Nervoso Simpático/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Animais , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Frequência Cardíaca , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Neurônios/citologia , Norepinefrina/metabolismo , Optogenética , Ratos , Ratos Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 112(32): E4495-504, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26204914

RESUMO

Extrasystoles lead to several consequences, ranging from uneventful palpitations to lethal ventricular arrhythmias, in the presence of pathologies, such as myocardial ischemia. The role of working versus conducting cardiomyocytes, as well as the tissue requirements (minimal cell number) for the generation of extrasystoles, and the properties leading ectopies to become arrhythmia triggers (topology), in the normal and diseased heart, have not been determined directly in vivo. Here, we used optogenetics in transgenic mice expressing ChannelRhodopsin-2 selectively in either cardiomyocytes or the conduction system to achieve cell type-specific, noninvasive control of heart activity with high spatial and temporal resolution. By combining measurement of optogenetic tissue activation in vivo and epicardial voltage mapping in Langendorff-perfused hearts, we demonstrated that focal ectopies require, in the normal mouse heart, the simultaneous depolarization of at least 1,300-1,800 working cardiomyocytes or 90-160 Purkinje fibers. The optogenetic assay identified specific areas in the heart that were highly susceptible to forming extrasystolic foci, and such properties were correlated to the local organization of the Purkinje fiber network, which was imaged in three dimensions using optical projection tomography. Interestingly, during the acute phase of myocardial ischemia, focal ectopies arising from this location, and including both Purkinje fibers and the surrounding working cardiomyocytes, have the highest propensity to trigger sustained arrhythmias. In conclusion, we used cell-specific optogenetics to determine with high spatial resolution and cell type specificity the requirements for the generation of extrasystoles and the factors causing ectopies to be arrhythmia triggers during myocardial ischemia.


Assuntos
Complexos Cardíacos Prematuros/patologia , Miocárdio/patologia , Optogenética/métodos , Especificidade de Órgãos , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Complexos Cardíacos Prematuros/complicações , Complexos Cardíacos Prematuros/fisiopatologia , Channelrhodopsins , Conexinas/metabolismo , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Fenômenos Eletrofisiológicos , Humanos , Integrases/metabolismo , Ligadura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/patologia , Ramos Subendocárdicos/fisiopatologia , Proteína alfa-5 de Junções Comunicantes
3.
J Biol Chem ; 287(7): 4818-25, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22139833

RESUMO

Channelrhodopsin-2 (ChR2) is a light-gated cation channel widely used as a biotechnological tool to control membrane depolarization in various cell types and tissues. Although several ChR2 variants with modified properties have been generated, the structural determinants of the protein function are largely unresolved. We used bioinformatic modeling of the ChR2 structure to identify the putative cationic pathway within the channel, which is formed by a system of inner cavities that are uniquely present in this microbial rhodopsin. Site-directed mutagenesis combined with patch clamp analysis in HeLa cells was used to determine key residues involved in ChR2 conductance and selectivity. Among them, Gln-56 is important for ion conductance, whereas Ser-63, Thr-250, and Asn-258 are previously unrecognized residues involved in ion selectivity and photocurrent kinetics. This study widens the current structural information on ChR2 and can assist in the design of new improved variants for specific biological applications.


Assuntos
Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Channelrhodopsins , Biologia Computacional/métodos , Células HeLa , Humanos , Transporte de Íons/fisiologia , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...