Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(15): 22362-22379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409380

RESUMO

Urban rivers are significantly impacted by anthropogenic pressure. This study presents the updated assessment of the concentrations of 11 metals and other variables (pH, total organic carbon (TOC) and nutrients (total nitrogen, total phosphorus, and total silica)) in the sediments of four urban rivers in inner Hanoi city, Vietnam, during the period 2020-2022. The mean concentrations of Fe, Zn, As, and Cr were higher than the permissible values of the Vietnam National technical regulation on the surface sediment quality. Moreover, Zn and Cr were at the severe effect level of the US EPA guidelines for sediment quality. The calculation of pollution indices (Igeo and EF) demonstrated that Mn, Ni, and Fe were from natural sources whereas other metals were from both anthropogenic and natural sources. The ecological risk index revealed that metals in Hanoi riverine sediments were classified at considerable ecological risk. High values of metals, TOC, and nutrients in the sediments of these urban rivers mostly originate from the accumulation of untreated urban wastewater that is enhanced by low river discharge. Our results may provide scientific base for better management decisions to ensure environmental protection and sustainable development of Hanoi city.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Vietnã , Rios , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Ásia , Medição de Risco , China
2.
Environ Monit Assess ; 194(2): 65, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34993616

RESUMO

Microplastics (MPs) are small (< 5 mm) plastic particles that are widely found in marine, freshwater, terrestrial and atmospheric environments. Due to their prevalence and persistence, MPs are considered an emerging contaminant of environmental concern. The separation and quantitation of MPs from freshwater sediments is a challenging and critical issue. It is necessary to identify the fate and sources of MPs in the environment, minimise their release and adverse effects. Compared to marine sediments, standardised methods for extracting and estimating the amount of MPs in freshwater sediments are relatively limited. The present study focuses on MP recovery efficiency of four commonly used salt solutions (NaCl, NaI, CaCl2 and ZnCl2) for isolating MPs during the density separation step from freshwater sediment. Known combinations of artificial MP particles (PS, PE, PVC, PET, PP and HDPE) were spiked into standard river sediment. Extraction using NaI, ZnCl2 and NaCl solutions resulted in higher recovery rates from 37 to 97% compared to the CaCl2 solution (28-83%) and varied between polymer types. Low-density MPs (PE, HDPE, PP and PS) were more effectively recovered (> 87%) than the denser polymers (PET and PVC: 37 to 88.8%) using NaCl, NaI and ZnCl2 solutions. However, the effective flotation of ZnCl2 and NaI solutions is relatively expensive and unsafe to the environment, especially in the context of developing countries. Therefore, considering the efficiency, cost and environmental criteria, NaCl solution was selected. The protocol was then tested by extracting MPs from nine riverine sediment samples from the Red River Delta. Sediments collected from urban rivers were highly polluted by MPs (26,000 MPs items·kg-1 DW) compared to sediments located downstream. Using a NaCl solution was found to be effective in this case study and might also be used in long-term and large-scale MP monitoring programmes in Vietnam.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 808: 151989, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34883176

RESUMO

Plastic pollution in freshwater ecosystems, including microplastics (MPs) smaller than 5 mm, has become an emerging global concern. Asia is considered a "hot spot" for plastic pollution due to rapid economic and demographic growth, together with rapid urbanization. Here, we provide an overview of the current knowledge on MP abundance, sources, fate, and transfer in Asian freshwater ecosystems based on publications from January 2014 to May 2021. MP contamination in freshwater compartments, including water, sediment, and biota, was found to vary strongly. In water, it ranged from 0.004 items m-3 in a moderately urbanized region to more than 500,000 items m-3 in a dumping river in a highly populated watershed. In the sediment, MP abundance ranged from 1 to more than 30,000 items kg-1 dry weight. Polyethylene (PE) and polypropylene (PP) were predominant in both water and sediment compartments. MP was detected in biota samples from all the studied species, but their abundance depended on the locations and species studied. Overall, MP characteristics (form, size, color, and polymer type) depended on sources and natural constraints (mainly hydrodynamics). This study also revealed that MP in Asian freshwater ecosystems mainly originated from domestic wastewater/runoff, followed by industrial emissions, fisheries and aquaculture wastewater. Plastic waste is not efficiently recycled or incinerated in Asia, leading to MP transfer and accumulation in the aquatic environment, and, more importantly, to ingestion by low to high trophic level organisms. This work highlights several knowledge gaps to guides future research to improve MP pollution management for the sustainable development of highly populated regions such as Asia.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Água Doce , Plásticos , Poluentes Químicos da Água/análise
4.
Environ Res ; 197: 111158, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887272

RESUMO

Comprehensive and updated information about polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) in surface sediments from Hanoi, the capital city of Vietnam, is rather scarce. In this study, concentrations and profiles of 209 PCBs, 41 polybrominated diphenyl ethers (PBDEs), 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), hexabromocyclododecane (HBCD), pentabromoethylbenzene (PBEB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and decabromodiphenyl ethane (DBDPE) were determined in sediment samples collected from the Red River and some inner-city rivers of Hanoi. Concentrations (ng/g dry weight, median and range) of pollutants decreased in the order: DBDPE (28; not detected ND - 59) ≈ PCBs (27; 1.7-50) > PBDEs (23; 0.20-61) > HBCD (1.2; ND - 5.2) > BTBPE (0.46; ND - 3.6) > BB-153 (0.004; ND - 0.014) > PBEB (ND). Pollutant levels in the inner-city river sediments were about one to two orders of magnitude higher than those measured in the Red River main stream sediments. Tri-to hexa-CBs are major homologs but detailed profiles vary between individual samples, reflecting source and/or seasonal variations. CB-11 and CB-209 were found at higher proportions in sediments than in technical PCB mixtures, suggesting their novel sources from pigments. Deca-BDE and DBDPE are the most predominant BFRs with an increasing trend predicted for DBDPE. A preliminary ecological risk assessment was conducted for these pollutants in sediments. Total PCBs and deca-BDE in a few inner-city river sediments may exhibit adverse effects on benthic organisms, but no serious risk was estimated in general.


Assuntos
Retardadores de Chama , Bifenilos Policlorados , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Vietnã
5.
J Anal Methods Chem ; 2021: 6649362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763286

RESUMO

Fisheries and aquaculture production in the coastal zone of Vietnam contribute significantly to the national economy. However, seafood quality and safety, especially in terms of metal contents, are of increasing concern, for both domestic and international markets. This paper presents the results of an investigation in some trace metal elements (iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), arsenic (As), cadmium (Cd), and mercury (Hg)) concentrations in some fishes, crustaceans, and molluscs in the coastal zone of the Red River (in the Ba Lat estuary in Thai Binh and Nam Dinh provinces) during four sampling campaigns in 2020. All samples were treated by a green sample preparation using microwave digestion and then analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the trace metal element concentrations in fish, crustacean, and mollusc samples decreased in the following order: Fe > Zn > Mn > Cu > As > Cd ∼ Hg. In more details, the ranges of trace metal elements in seafood samples were 13.13-202.73; 7.63-82.71; 0.48-22.73; 0.72-15.58; 0.18-5.12; 0.001-1.114; and 0.001-0.923 mg·kg-1 for Fe, Zn, Mn, Cu, As, Cd, and Hg, respectively. The research results contribute to the dataset of the seafood (both fishery and aquacultural seafood) quality in the Red River coastal zone. Although the mean values of different trace metal elements observed in this study were lower than the allowed values of Vietnam's or European's threshold for food safety, some high concentrations were detected. The survey results suggest the need to expand the monitoring scope (frequency of monitoring, number of samples, and observed variables) for obtaining a fully comprehensive assessment of seafood quality in this region. Our results also indicate that it is necessary to manage water quality in coastal areas, especially where aquaculture activities are carried out.

6.
Bull Environ Contam Toxicol ; 107(3): 475-486, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33760936

RESUMO

Unsubstituted and methylated polycyclic aromatic hydrocarbons (22 PAHs and 17 Me-PAHs) were examined in surface sediments collected from the Red River and four inner-city rivers of Hanoi City, Vietnam. Concentrations of total PAHs and Me-PAHs ranged from 52 to 920 (median 710) and from 70 to 2600 (median 1000) ng/g dry weight in samples of dry and wet seasons, respectively. Significant correlation was observed between total PAHs and organic carbon contents (Spearman's ρ = 0.782; p < 0.05). PAHs were more abundant than Me-PAHs in all samples and dominated by 4-6 ring compounds. The most predominant PAHs were benzo[ghi]perylene, benzo[b/j]fluoranthene, chrysene, pyrene, fluoranthene, and phenanthrene. Methylated derivatives of naphthalene, phenanthrene, anthracene, and benz[a]anthracene were frequently detected. The patterns of PAHs indicated principal pyrogenic sources (notably gasoline exhaust) in this highly urbanized area. The occurrence of several PAHs were occasionally associated with adverse effects on benthic organisms of the inner-city rivers.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Vietnã , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 764: 142865, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097262

RESUMO

This review provides focused insights into the contamination status, sources, and ecological risks associated with multiple classes of antibiotics in surface water from the East and Southeast Asia based on publications over the period 2007 to 2020. Antibiotics are ubiquitous in surface water of these countries with concentrations ranging from <1 ng/L to hundreds µg/L and median values from 10 to 100 ng/L. Wider ranges and higher maximum concentrations of certain antibiotics were found in surface water of the East Asian countries like China and South Korea than in the Southeast Asian nations. Environmental behavior and fate of antibiotics in surface water is discussed. The reviewed occurrence of antibiotics in their sources suggests that effluent from wastewater treatment plants, wastewater from aquaculture and livestock production activities, and untreated urban sewage are principal sources of antibiotics in surface water. Ecological risks associated with antibiotic residues were estimated for aquatic organisms and the prevalence of antibiotic resistance genes and antibiotic-resistant bacteria were reviewed. Such findings underline the need for synergistic efforts from scientists, engineers, policy makers, government managers, entrepreneurs, and communities to manage and reduce the burden of antibiotics and antibiotic resistance in water bodies of East and Southeast Asian countries.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Sudeste Asiático , China , Monitoramento Ambiental , Ásia Oriental , República da Coreia , Águas Residuárias , Água , Poluentes Químicos da Água/análise
8.
Environ Sci Pollut Res Int ; 28(9): 10622-10632, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33098563

RESUMO

Antibiotic residues and antimicrobial resistance in surface water are issues of global concern, especially in developing countries. In this study, the occurrence of seven antibiotics and one antiparasitic agent was determined in surface water samples collected from four rivers running through Hanoi urban area in the Red River Delta, northern Vietnam. The pharmaceuticals in water samples were analyzed by solid-phase extraction combined with liquid chromatography-tandem mass spectrometry method. The concentrations of pharmaceuticals in our samples ranged from 3050 to 16,700 (median 7800) ng/L, which were generally higher than levels found in river water from many other locations in the world. Amoxicillin, oxfendazole, and lincomycin were the most dominant and frequently detected compounds (detection rate 100%), which together accounted for 76 ± 14% of total concentrations. Sulfacetamide and sulfamethoxazole were detected at moderate concentrations in more than two-thirds of the analyzed samples. The remaining antibiotics (i.e., azithromycin, ciprofloxacin, and ofloxacin) were found at lower detection frequency and concentrations. Antibiotic concentrations in the water samples were not significantly different between the investigated rivers. Meanwhile, levels of pharmaceuticals in the samples collected in February 2020 were higher than those found in the remaining samples, largely due to the sharp decrease in sulfamethoxazole and azithromycin concentrations of the samples collected in March and April. Considerable ecological risks of antibiotics in surface water were estimated for some compounds such as amoxicillin, ciprofloxacin, and ofloxacin.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Antiparasitários , Monitoramento Ambiental , Medição de Risco , Vietnã , Água , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 709: 135852, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31887494

RESUMO

Improper processing activities of e-waste are potential sources of polycylic aromatic hydrocarbons (PAHs) and their derivatives, however, information about the environmental occurrence and adverse impacts of these toxic substances is still limited for informal e-waste recycling areas in Vietnam and Southeast Asia. In this study, unsubstituted and methylated PAHs were determined in surface soil and river sediment samples collected from a rural village with informal e-waste recycling activities in northern Vietnam. Total levels of PAHs and MePAHs decreased in the order: workshop soil (median 2900; range 870-42,000 ng g-1) > open burning soil (2400; 840-4200 ng g-1) > paddy field soil (1200; range 530-6700 ng g-1) > river sediment samples (750; 370-2500 ng g-1). About 60% of the soil samples examined in this study were heavily contaminated with PAHs. Fingerprint profiles of PAHs and MePAHs in the soil and sediment samples indicated that these pollutants were mainly released from pyrogenic sources rather than petrogenic sources. The emissions of PAHs and MePAHs in this area were probably attributed to uncontrolled burning of e-waste and agricultural by-products, domestic coal and biomass combustion, and traffic activities. Carcinogenicity and mutagenicity of PAHs in the e-waste workshop soils were significantly higher than those of the field soils; however, the incremental lifetime cancer risk of PAH-contaminated soils in this study ranged from 5.5 × 10-9 to 4.6 × 10-6, implying acceptable levels of human health risk. Meanwhile, concentrations of some compounds such as phenanthrene, anthracene, fluoranthene, benz[a]anthracene, and benzo[a]pyrene in several soil samples exceeded the maximum permissible concentrations, indicating the risk of ecotoxicological effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...