Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Biomater Sci ; 11(18): 6060-6081, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37525590

RESUMO

Achieving regeneration in humans has been a long-standing goal of many researchers. Whereas amphibians like the axolotl (Ambystoma mexicanum) are capable of regenerating whole organs and even limbs, most mammals heal their wounds via fibrotic scarring. Recently, the African spiny mouse (Acomys sp.) has been shown to be injury resistant and capable of regenerating several tissue types. A major focal point of research with Acomys has been the identification of drivers of regeneration. In this search, the matrisome components related to the extracellular matrix (ECM) are often overlooked. In this review, we compare Acomys and axolotl skin wound healing and blastema-mediated regeneration by examining their wound healing responses and comparing the expression pattern of matrisome genes, including glycosaminoglycan (GAG) related genes. The goal of this review is to identify matrisome genes that are upregulated during regeneration and could be potential candidates for inclusion in pro-regenerative biomaterials. Research papers describing transcriptomic or proteomic coverage of either skin regeneration or blastema formation in Acomys and axolotl were selected. Matrisome and GAG related genes were extracted from each dataset and the resulting lists of genes were compared. In our analysis, we found several genes that were consistently upregulated, suggesting possible involvement in regenerative processes. Most of the components have been implicated in regulation of cell behavior, extracellular matrix remodeling and wound healing. Incorporation of such pro-regenerative factors into biomaterials may help to shift pro-fibrotic processes to regenerative responses in treated wounds.


Assuntos
Ambystoma mexicanum , Murinae , Humanos , Animais , Murinae/fisiologia , Proteômica , Cicatrização/genética , Regeneração , Materiais Biocompatíveis
2.
Bioact Mater ; 20: 463-471, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35800408

RESUMO

Iatrogenic preterm premature rupture of fetal membranes (iPPROM) after fetal surgery remains a strong trigger for premature birth. As fetal membrane defects do not heal spontaneously and amniotic fluid leakage and chorioamniotic membrane separation may occur, we developed a biocompatible, fetoscopically-applicable collagen plug with shape memory to prevent leakage. This plug expands directly upon employment and seals fetal membranes, hence preventing amniotic fluid leakage and potentially iPPROM. Lyophilized type I collagen plugs were given shape memory and crimped to fit through a fetoscopic cannula (Ø 3 mm). Expansion of the plug was examined in phosphate buffered saline (PBS). Its sealing capacity was studied ex vivo using human fetal membranes, and in situ in a porcine bladder model. The crimped plug with shape memory expanded and tripled in diameter within 1 min when placed into PBS, whereas a crimped plug without shape memory did not. In both human fetal membranes and porcine bladder, the plug expanded in the defect, secured itself and sealed the defect without membrane rupture. In conclusion, collagen plugs with shape memory are promising as medical device for rapid sealing of fetoscopic defects in fetal membranes at the endoscopic entry point.

3.
Pharmaceutics ; 14(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297427

RESUMO

The process of wound healing is a tightly controlled cascade of events, where severe skin wounds are resolved via scar tissue. This fibrotic response may be diminished by applying anti-fibrotic factors to the wound, thereby stimulating regeneration over scarring. The development of tunable biomaterials that enable spatiotemporal control over the release of anti-fibrotics would greatly benefit wound healing. Herein, harnessing the power of click-to-release chemistry for regenerative medicine, we demonstrate the feasibility of such an approach. For this purpose, one side of a bis-N-hydroxysuccinimide-trans-cyclooctene (TCO) linker was functionalized with human epidermal growth factor (hEGF), an important regulator during wound healing, whereas on the other side a carrier protein was conjugated-either type I collagen scaffolds or bovine serum albumin (BSA). Mass spectrometry demonstrated the coupling of hEGF-TCO and indicated a release following exposure to dimethyl-tetrazine. Type I collagen scaffolds could be functionalized with the hEGF-TCO complex as demonstrated by immunofluorescence staining and Western blotting. The hEGF-TCO complex was also successfully ligated to BSA and the partial release of hEGF upon dimethyl-tetrazine exposure was observed through Western blotting. This work establishes the potential of click-to-release chemistry for the development of pro-regenerative biomaterials.

4.
Pharmaceutics ; 14(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36015245

RESUMO

In our aging society, the number of patients suffering from poorly healing bone defects increases. Bone morphogenetic proteins (BMPs) are used in the clinic to promote bone regeneration. However, poor control of BMP delivery and thus activity necessitates high doses, resulting in adverse effects and increased costs. It has been demonstrated that messenger RNA (mRNA) provides a superior alternative to protein delivery due to local uptake and prolonged expression restricted to the site of action. Here, we present the development of porous collagen scaffolds incorporating peptide-mRNA nanoparticles (NPs). Nanoparticles were generated by simply mixing aqueous solutions of the cationic cell-penetrating peptide PepFect14 (PF14) and mRNA. Peptide-mRNA complexes were uniformly distributed throughout the scaffolds, and matrices fully preserved cell attachment and viability. There was a clear dependence of protein expression on the incorporated amount of mRNA. Importantly, after lyophilization, the mRNA formulation in the collagen scaffolds retained activity also at 4 °C over two weeks. Overall, our results demonstrate that collagen scaffolds incorporating peptide-mRNA complexes hold promise as off-the-shelf functional biomaterials for applications in regenerative medicine and constitute a viable alternative to lipid-based mRNA formulations.

5.
Front Immunol ; 12: 715724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484218

RESUMO

In mucosa such as tonsil, antibody-producing plasmocytes (PCs) lie in sub-epithelium space, which is thought to provide a suitable environment for their survival. A proliferation inducing ligand (APRIL) is one key survival factor for PCs present in this area. According to in situ staining, apical epithelial cells produced APRIL, and the secreted product had to migrate all through the stratified surface epithelium to reach basal cells. A similar process also occurred in the less-organized crypt epithelium. Tonsil epithelial cells captured secreted APRIL, thanks to their surface expression of the APRIL coreceptor, either syndecan-1 or -4 depending on their differentiation stage. In the most basal epithelial cells, secreted APRIL accumulated inside secretory lamp-1+ vesicles in a polarized manner, facing the sub-epithelium. The tonsil epithelium upregulated APRIL production by apical cells and secretion by basal cells upon Toll-like receptor stimulation. Furthermore, LPS-stimulated epithelial cells sustained in vitro PC survival in a secreted APRIL-dependent manner. Taken together, our study shows that the tonsil epithelium responds to pathogen sensing by a polarized secretion of APRIL in the sub-epithelial space, wherein PCs reside.


Assuntos
Epitélio/metabolismo , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Receptores Toll-Like/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/biossíntese , Biomarcadores , Linhagem Celular , Polaridade Celular , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Imuno-Histoquímica , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Receptores Toll-Like/agonistas
6.
Arch Pharm (Weinheim) ; 354(8): e2100082, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33963608

RESUMO

Small molecules have gained considerable interest in regenerative medicine, as they can effectively modulate cell fates in a spatiotemporal controllable fashion. A continuous challenge in the field represents genuine mimicry or activation of growth factor signaling with small molecules. Here, we selected and profiled three compounds for their capacity to directly or indirectly activate endogenous FGF-2, VEGF, or SHH signaling events in the context of skin regeneration. Phenotypic and functional analysis of primary skin fibroblasts and keratinocytes revealed unique, cell-specific activity profiles for the FGF-2 mimetic SUN11602 and the putative VEGF mimetic ONO-1301. Whereas SUN11602 exclusively stimulated keratinocyte differentiation, ONO-1301 mainly affected the proliferation and migration behavior of fibroblasts. In each skin cell type, both compounds selectively enhanced the expression of MMP1 and VEGFA. A combined small molecule FGF-2/VEGF mimicry may not only improve angiogenesis-related microcirculation but also reduce early fibrosis while facilitating wound remodeling at later stages. SUN11602 and ONO-1301 represent valuable tools for improving the management of difficult-to-heal wounds, particularly for the design and development of small molecule-functionalized, next-generation, engineered skin substitutes.


Assuntos
Benzamidas/farmacologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Piridinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Humanos , Queratinócitos/citologia , Regeneração/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Cicatrização/efeitos dos fármacos
7.
Mol Cell Proteomics ; 20: 100079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33845168

RESUMO

The extracellular matrix is a key component of tissues, yet it is underrepresented in proteomic datasets. Identification and evaluation of proteins in the extracellular matrix (ECM) has proved challenging due to the insolubility of many ECM proteins in traditional protein extraction buffers. Here we separate the decellularization and ECM extraction steps of several prominent methods for evaluation under real-world conditions. The results are used to optimize a two-fraction ECM extraction method. Approximately one dozen additional parameters are tested, and recommendations for analysis based on overall ECM coverage or specific ECM classes are given. Compared with a standard in-solution digest, the optimized method yielded a fourfold improvement in unique ECM peptide identifications.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Proteômica/métodos , Animais , Matriz Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteoma
8.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L832-L844, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33656381

RESUMO

Mesenchymal stromal cells (MSCs) may provide crucial support in the regeneration of destructed alveolar tissue (emphysema) in chronic obstructive pulmonary disease (COPD). We hypothesized that lung-derived MSCs (LMSCs) from patients with emphysema are hampered in their repair capacity, either intrinsically or due to their interaction with the damaged microenvironment. LMSCs were isolated from the lung tissue of controls and patients with severe emphysema and characterized at baseline. In addition, LMSCs were seeded onto control and emphysematous decellularized lung tissue scaffolds and assessed for deposition of extracellular matrix (ECM). We observed no differences in surface markers, differentiation/proliferation potential, and expression of ECM genes between control- and COPD-derived LMSCs. Notably, COPD-derived LMSCs displayed lower expression of FGF10 and HGF messenger RNA (mRNA) and hepatocyte growth factor (HGF) and decorin protein. When seeded on control decellularized lung tissue scaffolds, control- and COPD-derived LMSCs showed no differences in engraftment, proliferation, or survival within 2 wk, with similar ability to deposit new matrix on the scaffolds. Moreover, LMSC numbers and the ability to deposit new matrix were not compromised on emphysematous scaffolds. Collectively, our data show that LMSCs from patients with COPD compared with controls show less expression of FGF10 mRNA, HGF mRNA and protein, and decorin protein, whereas other features including the mRNA expression of various ECM molecules are unaffected. Furthermore, COPD-derived LMSCs are capable of engraftment, proliferation, and functioning on native lung tissue scaffolds. The damaged, emphysematous microenvironment as such does not hamper the potential of LMSCs. Thus, specific intrinsic deficiencies in growth factor production by diseased LMSCs may contribute to impaired alveolar repair in emphysema.


Assuntos
Matriz Extracelular/patologia , Pulmão/patologia , Células-Tronco Mesenquimais/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/patologia , Alicerces Teciduais/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Pulmão/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo
9.
Tissue Eng Part A ; 27(1-2): 10-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971880

RESUMO

Primary closure of fetal skin in spina bifida protects the spinal cord and improves clinical outcome, but is also associated with postnatal growth malformations and spinal cord tethering. In this study, we evaluated the postnatal effects of prenatally closed full-thickness skin defects in sheep applying collagen scaffolds with and without heparin/vascular endothelial growth factor/fibroblast growth factor 2, focusing on skin regeneration and growth. At 6 months, collagen scaffold functionalized with heparin, VEGF, and FGF2 (COL-HEP/GF) resulted in a 6.9-fold increase of the surface area of the regenerated skin opposed to 1.7 × for collagen only. Epidermal thickness increased 5.7-fold at 1 month, in line with high gene expression of S100 proteins, and decreased to 2.1 at 6 months. Increased adipose tissue and reduced scaffold degradation and number of myofibroblasts were observed for COL-HEP/GF. Gene ontology terms related to extracellular matrix (ECM) organization were enriched for both scaffold treatments. In COL-HEP/GF, ECM gene expression resembled native skin. Expression of hair follicle-related genes in COL-HEP/GF was comparable to native skin, and de novo hair follicle generation was indicated. In conclusion, in utero closure of skin defects using functionalized collagen scaffolds resulted in long-term skin regeneration and growth. Functionalized collagen scaffolds that grow with the child may be useful for prenatal treatment of closure defects like spina bifida. Impact statement Prenatal closure of fetal skin in case of spina bifida prevents damage to the spinal cord. Closure of the defect is challenging and may result in postnatal growth malformations. In this study, the postnatal effects of a prenatally applied collagen scaffold functionalized with heparin and vascular endothelial growth factor (VEGF)/fibroblast growth factor (FGF) were investigated. An increase of the surface area of regenerated skin ("growing with the child") and generation of hair follicles was observed. Gene expression levels resembled those of native skin with respect to the extracellular matrix and hair follicles. Overall, in utero closure of skin defects using heparin/VEGF/FGF functionalized collagen scaffolds results in long-term skin regeneration.


Assuntos
Colágeno , Regeneração , Pele , Alicerces Teciduais , Animais , Matriz Extracelular , Feminino , Fator 2 de Crescimento de Fibroblastos , Gravidez , Ovinos , Pele/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular
10.
Glycoconj J ; 37(4): 445-455, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468289

RESUMO

Heparan sulfate (HS) is a linear polysaccharide with high structural diversity. Different HS epitopes have been detected and localized using single chain variable fragment (scFv) antibodies from a 'single pot' phage display library containing a randomized complementarity determining region of the heavy chain (CDR3). In this study, we created a new library containing anti-HS scFvs that all harbor a dp-38 heavy chain segment where the CDR3 region was engineered to contain the XBBXBX heparin binding consensus site (X = any amino acid, B = R, K or H). The library contained ~1.73 × 106 unique antibodies and was biopanned against HS from several sources. The selected antibodies were sequenced and chemically/immunohistologically characterized. A number of 67 anti-HS scFv antibodies were selected, of which 31 contained a XBBXBX CDR3 sequence. There was a clear preference for glycine at the first and proline at the fourth position of the CDR3. The sequence GZZP(R/K)X (Z = R, K or H, but may also contain N, S, or Q) was unusually overrepresented. Selected antibodies reacted with HS/heparin, but not with other glycosaminoglycans. Antibodies reacted differentially with respect to N-, 2-O, or 6-O-desulfated heparin preparations, and showed distinct topologies of HS epitopes in rat kidney sections. The library may be instrumental in the selection of a large pool of HS epitope-specific antibodies, and - since all antibodies differ only in their 6 amino acid CDR region - may be a tool for a rational design of antibodies recognizing specific HS sulfation patterns.


Assuntos
Heparitina Sulfato/imunologia , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Domínio Único/química , Animais , Sítios de Ligação , Bioprospecção , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Rim/imunologia , Rim/metabolismo , Masculino , Ratos Wistar , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo
11.
ACS Omega ; 5(8): 3908-3916, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149217

RESUMO

The construction of scaffolds and subsequent incorporation of cells and biologics have been widely investigated to regenerate damaged tissues. Scaffolds act as a template to guide tissue formation, and their characteristics have a considerable impact on the regenerative process. Whereas many technologies exist to induce specific two-dimensional (2D) morphologies into biomaterials, the introduction of three-dimensional (3D) micromorphologies into individual pore walls of scaffolds produced from biological molecules such as collagen poses a challenge. We here report the use of dicarboxylic acids to induce specific micromorphologies in collagen scaffolds and evaluate their effect on cellular migration and differentiation. Insoluble type I collagen fibrils were suspended in monocarboxylic and dicarboxylic acids of different concentrations, and unidirectional and random pore scaffolds were constructed by freezing and lyophilization. The application of various acids and concentrations resulted in variations in 3D micromorphologies, including wall structure, wall thickness, and pore size. The use of dicarboxylic acids resulted in acid-specific micromorphologies, whereas monocarboxylic acids did not. Dicarboxylic acids with an odd or even number of C-atoms resulted in frayed/fibrillar or smooth wall structures, respectively, with varying appearances. The formation of micromorphologies was concentration-dependent. In vitro analysis indicated the cytocompatibility of scaffolds, and micromorphology-related cell behavior was indicated by enhanced myosin staining and myosin heavy chain gene expression for C2C12 myoblasts cultured on scaffolds with frayedlike micromorphologies compared to those with smooth micromorphologies. In conclusion, porous collagen scaffolds with various intrawall 3D micromorphologies can be constructed by application of dicarboxylic acids, superimposing the second level of morphology to the overall scaffold structure. Acid crystal formation is key to the specific micromorphologies observed and can be explained by the odd/even theory for dicarboxylic acids. Scaffolds with a 3D micrometer-defined topography may be used as a screening platform to select optimal substrates for the regeneration of specific tissues.

12.
Cell Signal ; 63: 109364, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31351217

RESUMO

For many years elastin was considered as the matrix component structurally required to provide tissue elasticity. However, the expanded knowledge on the regulation of connective tissue homeostasis has revealed that elastic fibers also represent a source of elastokines and are the target of a number of signaling pathways mainly involving the TGF-ß/BMP axis. A better understanding of these complex regulatory networks may pave the way for targeted therapeutic strategies in a number of genetic as well as acquired diseases and for the development of new functionalized biomaterials.


Assuntos
Tecido Elástico/metabolismo , Elastina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Humanos , Camundongos , Ratos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
13.
Glycoconj J ; 36(3): 227-236, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31055697

RESUMO

Glycosaminoglycans (GAGs) are known to play pivotal roles in physiological processes and pathological conditions. To study interactions of GAGs with proteins, immobilization of GAGs is often required. Current methodologies for immobilization involve modification of GAGs and/or surfaces, which can be time-consuming and may involve specialized equipment. Here, we use an efficient and low-cost method to immobilize GAGs without any (chemical) modification using highly concentrated salt solutions. A number of salts from the Hofmeister series were probed for their capacity to immobilize heparin and chondroitin-6-sulfate on microtiter plates applying single chain antibodies against GAGs for detection (ELISA). From all salts tested, the cosmotropic salt ammonium sulfate was most efficient, especially at high concentrations (80-100% (v/v) saturation). Immobilized GAGs were bioavailable as judged by their binding of FGF2 and VEGF, and by their susceptibility towards GAG lyases (heparinase I, II and III, chondroitinase ABC). Using 80% (v/v) saturated ammonium sulfate, block and continuous gradients of heparin were established and a gradient of FGF2 was created using a heparin block gradient as a template. In conclusion, high concentrations of ammonium sulfate are effective for immobilization of GAGs and for the establishment of gradients of both GAGs and GAG-binding molecules, which enables the study to the biological roles of GAGs.


Assuntos
Sulfatos de Condroitina/química , Fatores de Crescimento de Fibroblastos/química , Heparina/química , Fator A de Crescimento do Endotélio Vascular/química , Heparina Liase/metabolismo , Poliésteres/química , Impressão Tridimensional , Sais/química
14.
Adv Drug Deliv Rev ; 146: 60-76, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30107211

RESUMO

The healing of skeletal muscle injuries after major trauma or surgical reconstruction is often complicated by the development of fibrosis leading to impaired function. Research in the field of muscle regeneration is mainly focused on the restoration of muscle mass while far less attention is paid to the prevention of fibrosis. In this review, we take as an example the reconstruction of the muscles in the soft palate of cleft palate patients. After surgical closure of the soft palate, muscle function during speech is often impaired by a shortage of muscle tissue as well as the development of fibrosis. We will give a short overview of the most common approaches to generate muscle mass and then focus on strategies to prevent fibrosis. These include anti-fibrotic strategies that have been developed for muscle and other organs by the delivery of small molecules, decorin and miRNAs. Anti-fibrotic compounds should be delivered in aligned constructs in order to obtain the organized architecture of muscle tissue. The available techniques for the preparation of aligned muscle constructs will be discussed. The combination of approaches to generate muscle mass with anti-fibrotic components in an aligned muscle construct may greatly improve the functional outcome of regenerative therapies for muscle injuries.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Sistemas de Liberação de Medicamentos , Fibrose/terapia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Músculo Esquelético/efeitos dos fármacos , Palato Mole/efeitos dos fármacos , Animais , Fibrose/patologia , Humanos , Músculo Esquelético/patologia , Palato Mole/patologia
16.
RSC Adv ; 9(63): 36742-36750, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35539087

RESUMO

Type I collagen scaffolds for tissue reconstruction often have impaired mechanical characteristics such as limited stiffness and lack of strength. In this study, a new technique is presented to fine-tune stiffness and biodegradability of collagen scaffolds by treatment with concentrated salt solutions. Collagen scaffolds were prepared by a casting, freezing and lyophilization process. Scaffolds were treated with 90% saturated salt solutions, the salts taken from the Hofmeister series, followed by chemical crosslinking. Treatment with salts consisting of a divalent cation in combination with a monovalent anion, e.g. CaCl2, resulted in fast shrinkage of the scaffolds up to approximately 10% of the original surface area. Effective salts were mostly at the chaotropic end of the Hofmeister series. Shrunken scaffolds were more than 10 times stiffer than non-shrunken control scaffolds, and displayed reduced pore sizes and swollen, less organized collagen fibrils. The effect could be pinpointed to the level of individual collagen molecules and indicates the shrinking effect to be driven by disruption of stabilizing hydrogen bonds within the triple helix. No calcium deposits remained in CaCl2 treated scaffolds. Subcutaneous implantation in rats showed similar biocompatibility compared to H2O and NaCl treated scaffolds, but reduced cellular influx and increased structural integrity without signs of major degradation after 3 months. In conclusion, high concentrations of chaotropic salts can be used to adjust the mechanical characteristics of collagen scaffolds without affecting biocompatibility. This technique may be used in regenerative medicine to stiffen collagen scaffolds to better comply with the surrounding tissues, but may also be applied for e.g. slow release drug delivery systems.

17.
Int J Chron Obstruct Pulmon Dis ; 14: 2587-2602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063701

RESUMO

Current pharmacotherapy of chronic obstructive pulmonary disease (COPD) aims at reducing respiratory symptoms and exacerbation frequency. Effective therapies to reduce disease progression, however, are still lacking. Furthermore, COPD medications showed less favorable effects in emphysema than in other COPD phenotypes. Elastin fibers are reduced and disrupted, whereas collagen levels are increased in emphysematous lungs. Protease/antiprotease imbalance has historically been regarded as the sole cause of emphysema. However, it is nowadays appreciated that emphysema may also be provoked by perturbations in the sequential repair steps following elastolysis. Essentiality of fibulin-5 and lysyl oxidase-like 1 in the elastin restoration process is discussed, and it is argued that copper deficiency is a plausible reason for failing elastin repair in emphysema patients. Since copper-dependent lysyl oxidases crosslink elastin as well as collagen fibers, copper supplementation stimulates accumulation of both proteins in the extracellular matrix. Restoration of abnormal elastin fibers in emphysematous lungs is favorable, whereas stimulating pulmonary fibrosis formation by further increasing collagen concentrations and organization is detrimental. Heparin inhibits collagen crosslinking while stimulating elastin repair and might therefore be the ideal companion of copper for emphysema patients. Efficacy and safety considerations may lead to a preference of pulmonary administration of copper-heparin over systemic administration.


Assuntos
Cobre/administração & dosagem , Heparina/administração & dosagem , Enfisema Pulmonar/tratamento farmacológico , Animais , Cobre/deficiência , Modelos Animais de Doenças , Humanos , Enfisema Pulmonar/etiologia , Terapia Respiratória
18.
J Tissue Eng Regen Med ; 12(11): 2138-2150, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30055525

RESUMO

Gore-Tex® is a widely used durable patch for repair of congenital diaphragmatic defects yet may result in complications. We compared Gore-Tex with a composite of a radial pore-orientated collagen scaffold (RP-Composite) and clinically used porcine small intestinal submucosa (SIS; Surgisis®) in a rabbit model for diaphragmatic hernia. The growing rabbit mimics the rapid rib cage growth and reherniation rates seen in children. We created and immediately repaired left hemidiaphragmatic defects in 6-week-old rabbits with Gore-Tex, SIS, and an RP-Composite scaffold. An additional group of rabbits had a sham operation. At 90 days, survivors more than doubled in weight. We observed few reherniations or eventrations in Gore-Tex (17%) and RP-Composite (22%) implanted animals. However, SIS failed in all rabbits. Maximum transdiaphragmatic pressure was lower in Gore-Tex (71%) than RP-Composite implanted animals (112%) or sham (134%). Gore-Tex repairs were less compliant than RP-Composite, which behaved as sham diaphragm (p < 0.01). RP-Composite induced less foreign body giant cell reaction than Gore-Tex (p < 0.05) with more collagen deposition (p < 0.001), although there was a tendency for the scaffold to calcify. Unlike Gore-Tex, the compliance of diaphragms reconstructed with RP-Composite scaffolds were comparable with native diaphragm, whereas reherniation rates and transdiaphragmatic pressure measurements were similar.


Assuntos
Colágeno/química , Hérnia Diafragmática , Herniorrafia/métodos , Alicerces Teciduais/química , Animais , Modelos Animais de Doenças , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/patologia , Hérnia Diafragmática/patologia , Hérnia Diafragmática/cirurgia , Herniorrafia/efeitos adversos , Humanos , Masculino , Coelhos , Suínos , Alicerces Teciduais/efeitos adversos
19.
J Tissue Eng Regen Med ; 12(6): 1494-1498, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29704312

RESUMO

Collagen has been extensively used as a biomaterial, yet for tubular organ repair, synthetic polymers or metals (e.g., stents) are typically used. In this study, we report a novel type of tubular implant solely consisting of type I collagen, suitable to self-expand in case of minimal invasive implantation. Potential benefits of this collagen scaffold over conventional materials include improved endothelialization, biodegradation over time, and possibilities to add bioactive components to the scaffold, such as anticoagulants. Implants were prepared by compression of porous scaffolds consisting of fibrillar type I collagen (1.0-2.0% (w/v)). By applying carbodiimide cross-linking to the compressed scaffolds in their opened position, entropy-driven shape memory was induced. The scaffolds were subsequently crimped and dried around a guidewire. Upon exposure to water, crimped scaffolds deployed within 15-60 s (depending on the collagen concentration used), thereby returning to the original opened form. The scaffolds were cytocompatible as assessed by cell culture with human primary vascular endothelial and smooth muscle cells. Compression force required to compress the open scaffolds increased with collagen content from 16 to 32 mN for 1.0% to 2.0% (w/v) collagen scaffolds. In conclusion, we report the first self-expandable tubular implant consisting of solely type I collagen that may have potential as a biological vascular implant.


Assuntos
Colágeno/farmacologia , Próteses e Implantes , Animais , Bovinos , Alicerces Teciduais/química
20.
J Control Release ; 274: 1-8, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29382546

RESUMO

Systemic chemotherapy is a primary strategy in the treatment of cancer, but comes with a number of limitations such as toxicity and unfavorable biodistribution. To overcome these issues, numerous targeting systems for specific delivery of chemotherapeutics to tumor cells have been designed and evaluated. Such strategies generally address subsets of tumor cells, still allowing the progressive growth of tumor cells not expressing the target. Moreover, tumor stem cells and tumor supportive cells, such as cancer associated fibroblasts and cancer associated macrophages, are left unaffected by this approach. In this review, we discuss an alternative targeting strategy aimed at delivery of anti-tumor drugs to the tumoral extracellular matrix with the potential to eliminate all cell types. The extracellular matrix of tumors is vastly different from that of healthy tissue and offers hooks for targeted drug delivery. It is concluded that matrix targeting is promising, but that clinical studies are required to evaluate translation.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Terapia de Alvo Molecular , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...