Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Eur J Appl Physiol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551682

RESUMO

PURPOSE: The rising frequency of extreme heat events poses an escalating threat of heat-related illnesses and fatalities, placing an additional strain on global healthcare systems. Whether the risk of heat-related issues is sex specific, particularly among the elderly, remains uncertain. METHODS: 16 men and 15 women of similar age (69 ± 5 years) were exposed to an air temperature of 39.1 ± 0.3 °C and a relative humidity (RH) of 25.1 ± 1.9%, during 20 min of seated rest and at least 40 min of low-intensity (10 W) cycling exercise. RH was gradually increased by 2% every 5 min starting at minute 30. We measured sweat rate, heart rate, thermal sensation, and the rise in gastrointestinal temperature (Tgi) and skin temperature (Tsk). RESULTS: Tgi consistently increased from minute 30 to 60, with no significant difference between females and males (0.012 ± 0.004 °C/min vs. 0.011 ± 0.005 °C/min; p = 0.64). Similarly, Tsk increase did not differ between females and males (0.044 ± 0.007 °C/min vs. 0.038 ± 0.011 °C/min; p = 0.07). Females exhibited lower sweat rates than males (0.29 ± 0.06 vs. 0.45 ± 0.14 mg/m2/min; p < 0.001) in particular at relative humidities exceeding 30%. No sex differences in heart rate and thermal sensation were observed. CONCLUSION: Elderly females exhibit significantly lower sweat rates than their male counterparts during low-intensity exercise at ambient temperatures of 39 °C when humidity exceeds 30%. However, both elderly males and females demonstrate a comparable rise in core temperature, skin temperature, and mean body temperature, indicating similar health-related risks associated with heat exposure.

2.
J Emerg Med ; 66(3): e277-e283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336570

RESUMO

BACKGROUND: There is concern that the values provided by devices using infrared thermometry in emergency departments (EDs) do not reflect body core temperature accurately. OBJECTIVES: Evaluation of three thermometers commonly used in the ED. METHODS: Two infrared ear thermometers and an infrared forehead thermometer were evaluated using 1) the Voltcraft IRS-350 calibration device, 2) comparing temperature values to a rectal end-exercise temperature (T-RECT) of 38.1°C in 12 participants, and 3) comparing temperature values to rectal temperature in 133 ED patients. RESULTS: Calibration across the human core temperature range revealed that the ear thermometers underestimated radiant temperature by 0.77 ± 0.39°C and 1.84 ± 0.26°C, respectively, whereas the forehead thermometer overestimated radiant temperature by 0.90 ± 0.51°C. After cycling exercise, all thermometers underestimated T-RECT (0.54 ± 0.27°C and 1.03 ± 0.48°C for the ear thermometers and 1.14 ± 0.38°C for the forehead thermometer). In the ED, the ear thermometers underestimated T-RECT by 0.31 ± 0.37°C and 0.46 ± 0.50°C, whereas the forehead thermometer exhibited a nonsignificant overestimation of 0.04 ± 0.46°C. If the threshold for fever in all systems had been set to 37.5°C instead of 38.0°C, the sensitivity and specificity of the systems for real fever (T-RECT ≥ 38°C) are, respectively, 71% and 96% (ear thermometer 1), 57% and 97% (ear thermometer 2), and 86% and 90% (forehead thermometer). CONCLUSION: We conclude that the investigated thermometers are not reliable as devices to measure radiant temperature, cannot be used to assess body core temperature during exercise, but may be used as a screening device, with 37.5°C as a threshold for fever in emergency care settings.


Assuntos
Temperatura Corporal , Febre , Humanos , Temperatura , Febre/diagnóstico , Termômetros , Sensibilidade e Especificidade , Serviço Hospitalar de Emergência
3.
Int Arch Occup Environ Health ; 97(1): 35-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947815

RESUMO

PURPOSE: As climate change accelerates, healthcare workers (HCW) are expected to be more frequently exposed to heat at work. Heat stress can be exacerbated by physical activity and unfavorable working requirements, such as wearing personal protective equipment (PPE). Thus, understanding its potential negative effects on HCW´s health and working performance is becoming crucial. Using wearable sensors, this study investigated the physiological effects of heat stress due to HCW-related activities. METHODS: Eighteen participants performed four experimental sessions in a controlled climatic environment following a standardized protocol. The conditions were (a) 22 °C, (b) 22 °C and PPE, (c) 27 °C and (d) 27 °C and PPE. An ear sensor (body temperature, heart rate) and a skin sensor (skin temperature) were used to record the participants´ physiological parameters. RESULTS: Heat and PPE had a significant effect on the measured physiological parameters. When wearing PPE, the median participants' body temperature was 0.1 °C higher compared to not wearing PPE. At 27 °C, the median body temperature was 0.5 °C higher than at 22 °C. For median skin temperature, wearing PPE resulted in a 0.4 °C increase and higher temperatures in a 1.0 °C increase. An increase in median heart rate was also observed for PPE (+ 2/min) and heat (+ 3/min). CONCLUSION: Long-term health and productivity risks can be further aggravated by the predicted temperature rise due to climate change. Further physiological studies with a well-designed intervention are needed to strengthen the evidence for developing comprehensive policies to protect workers in the healthcare sector.


Assuntos
Transtornos de Estresse por Calor , Dispositivos Eletrônicos Vestíveis , Humanos , Equipamento de Proteção Individual , Temperatura Cutânea , Temperatura , Pessoal de Saúde , Transtornos de Estresse por Calor/prevenção & controle
4.
Med Sci Sports Exerc ; 56(2): 382, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793157
5.
Med Sci Sports Exerc ; 55(11): 2014-2024, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418241

RESUMO

PURPOSE: For wheelchair users with a spinal cord injury, the lower body may be a more convenient cooling site than the upper body. However, it remains unknown if leg cooling reduces thermal strain in these individuals. We compared the impact of upper-body versus lower-body cooling on physiological and perceptual outcomes during submaximal arm-crank exercise under heat stress in individuals with paraplegia. METHODS: Twelve male participants with paraplegia (T4-L2, 50% complete lesion) performed a maximal exercise test in temperate conditions, and three heat stress tests (32°C, 40% relative humidity) in which they received upper-body cooling (COOL-UB), lower-body cooling (COOL-LB), or no cooling (CON) in a randomized counterbalanced order. Each heat stress test consisted of four exercise blocks of 15 min at 50% of peak power output, with 3 min of rest in between. Cooling was applied using water-perfused pads, with 14.8-m tubing in both COOL-UB and COOL-LB. RESULTS: Gastrointestinal temperature was 0.2°C (95% confidence interval (CI), 0.1°C to 0.3°C) lower during exercise in COOL-UB versus CON (37.5°C ± 0.4°C vs 37.7°C ± 0.3°C, P = 0.009), with no difference between COOL-LB and CON ( P = 1.0). Heart rate was lower in both COOL-UB (-7 bpm; 95% CI, -11 to -3 bpm; P = 0.01) and COOL-LB (-5 bpm; 95% CI, -9 to -1 bpm; P = 0.049) compared with CON. The skin temperature reduction at the cooled skin sites was larger in COOL-LB (-10.8°C ± 1.1°C) than in COOL-UB (-6.7°C ± 1.4°C, P < 0.001), which limited the cooling capacity in COOL-LB. Thermal sensation of the cooled skin sites was improved and overall thermal discomfort was lower in COOL-UB ( P = 0.01 and P = 0.04) but not in COOL-LB ( P = 0.17 and P = 0.59) compared with CON. CONCLUSIONS: Upper-body cooling more effectively reduced thermal strain than lower-body cooling in individuals with paraplegia, as it induced greater thermophysiological and perceptual benefits.


Assuntos
Regulação da Temperatura Corporal , Transtornos de Estresse por Calor , Humanos , Masculino , Regulação da Temperatura Corporal/fisiologia , Braço , Exercício Físico/fisiologia , Temperatura Cutânea , Paraplegia , Temperatura Alta , Temperatura Corporal/fisiologia
6.
Temperature (Austin) ; 10(2): 264-275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332304

RESUMO

Paralympic athletes may be at increased risk for exertional heat illness (EHI) due to reduced thermoregulatory ability as a consequence of their impairment. This study investigated the occurrence of heat-stress related symptoms and EHI, and the use of heat mitigation strategies in Paralympic athletes, both in relation to the Tokyo 2020 Paralympic Games and previous events. Paralympic athletes competing in Tokyo 2020 were invited to complete an online survey five weeks prior to the Paralympics and up to eight weeks after the Games. 107 athletes (30 [24-38] years, 52% female, 20 nationalities, 21 sports) completed the survey. 57% of respondents had previously experienced heat-stress related symptoms, while 9% had been medically diagnosed with EHI. In Tokyo, 21% experienced at least one heat-stress related symptom, while none reported an EHI. The most common symptom and EHI were, respectively, dizziness and dehydration. In preparation for Tokyo, 58% of respondents used a heat acclimation strategy, most commonly heat acclimatization, which was more than in preparation for previous events (45%; P = 0.007). Cooling strategies were used by 77% of athletes in Tokyo, compared to 66% during past events (P = 0.18). Cold towels and packs were used most commonly. Respondents reported no medically-diagnosed EHIs during the Tokyo 2020 Paralympic Games, despite the hot and humid conditions in the first seven days of competition. Heat acclimation and cooling strategies were used by the majority of athletes, with heat acclimation being adopted more often than for previous competitions.

7.
Med Sci Sports Exerc ; 55(10): 1835-1844, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227231

RESUMO

PURPOSE: This study aimed to compare the impact of hot-humid environmental conditions on performance outcomes, thermoregulatory responses, and thermal perception during exercise between elite para- and able-bodied (AB) athletes. METHODS: Twenty elite para-athletes (para-cycling and wheelchair tennis) and 20 elite AB athletes (road cycling, mountain biking, beach volleyball) performed an incremental exercise test in a temperate environment (mean ± SD, 15.2°C ± 1.2°C; relative humidity, 54% ± 7%) and a hot-humid environment (31.9°C ± 1.6°C, 72% ± 5%). Exercise tests started with a 20-min warm-up at 70% of maximal heart rate, after which power output increased by 5% every 3 min until volitional exhaustion. RESULTS: Time to exhaustion was shorter in hot-humid versus temperate conditions, with equal performance loss for para- and AB athletes (median (interquartile range), 26% (20%-31%) vs 27% (19%-32%); P = 0.80). AB athletes demonstrated larger exercise-induced increases in gastrointestinal temperature (T gi ) in hot-humid versus temperate conditions (2.2 ± 0.7 vs 1.7 ± 0.5, P < 0.001), whereas T gi responses in para-athletes were similar between conditions (1.3 ± 0.6 vs 1.3 ± 0.4, P = 0.74). Para- and AB athletes showed similar elevations in peak skin temperature ( P = 0.94), heart rate ( P = 0.67), and thermal sensation score ( P = 0.64) in hot-humid versus temperate conditions. CONCLUSIONS: Elite para-athletes and AB athletes demonstrated similar performance decrements during exercise in hot-humid versus temperate conditions, whereas T gi elevations were markedly lower in para-athletes. We observed large interindividual variation within both groups, suggesting that in both para- and AB athletes, personalized heat mitigation plans should be developed based on individual thermal testing.


Assuntos
Temperatura Alta , Paratletas , Humanos , Exercício Físico/fisiologia , Regulação da Temperatura Corporal/fisiologia , Atletas , Umidade
8.
J Therm Biol ; 112: 103480, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796923

RESUMO

Heat flux systems are increasingly used to assess core body temperature. However, validation of multiple systems is scarce. Therefore, an experiment was performed in which three commercially available heat flux systems (3 M, Medisim and Core) were compared to rectal temperature (Tre). Five females and four males performed exercise in a climate chamber set at 18 °C/50% relative humidity until exhaustion. Exercise duration was 36.3 ± 5.6 min (mean ± standard deviation). Tre in rest was 37.2 ± 0.3 °C. Medisim's-values were lower than Tre (36.9 ± 0.4 °C, p < 0.05); 3 M (37.2 ± 0.1 °C) and Core's (37.4 ± 0.3 °C) did not differ from Tre. Maximal temperatures after exercise were 38.4 ± 0.2 °C (Tre), 38.0 ± 0.4 °C (3 M), 38.8 ± 0.3 °C (Medisim) and 38.6 ± 0.3 °C (Core); Medisim was significantly higher than Tre (p < 0.05). The temperature profiles of the heat flux systems during exercise differed to varying degree from the rectal profiles; the Medisim system showed a faster increase during exercise than Tre (0.48 ± 0.25 °C in 20 min, p < 0.05), the Core system tended to show a systematic overestimation during the entire exercise period and the 3 M system showed large errors at the end of exercise, likely due to sweat entering the sensor. Therefore, the interpretation of heat flux sensor values as core body temperature estimates should be done with care; more research is required to elucidate the physiological significance of the generated temperature values.


Assuntos
Regulação da Temperatura Corporal , Temperatura Corporal , Masculino , Feminino , Humanos , Regulação da Temperatura Corporal/fisiologia , Temperatura , Temperatura Alta , Exercício Físico/fisiologia
9.
Sports Biomech ; 22(5): 675-688, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-31466511

RESUMO

The aim of the study was to investigate whether jerk cost (JC) can discriminate between swimming levels. Nine elite and nine non-elite swimmers swam a 50-m front-crawl sprint wearing a 3D accelerometer on their back between the inferior angles of the scapulae. Lap times and JC were calculated from the acceleration signal and compared between groups and between swimmers within a group. The elite swimmers swam significantly faster lap times than the non-elite swimmers (p < 0.001). They did so with significantly lower levels of JC compared to the non-elite swimmers (p = 0.005). Furthermore, a stepwise multiple linear regression showed JC accounted for 32.9% of the variation in lap time of the elite swimmers. These results indicate that it is possible to discriminate elite from non-elite swimmers using JC: elite swimmers swim with lower JCs than non-elite swimmers. Additionally, swimming at higher speed is associated with more accelerations and decelerations in both elite and non-elite swimmers, which is reflected by higher JCs and lower smoothness. In sum, JC provides an index of swimming technique that is easy to use in training practice.


Assuntos
Aceleração , Natação , Humanos , Fenômenos Biomecânicos , Modelos Lineares
10.
Temperature (Austin) ; 9(4): 331-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339091

RESUMO

Heat acclimation (HA) protocols repeatedly expose individuals to heat stress. As HA is typically performed close to the pinnacle event, it is essential that the protocol does not compromise immune status, health, or wellbeing. The purpose of this study was to examine the effect of HA on resting salivary immunoglobulin-A (s-IgA) and salivary cortisol (s-cortisol), self-reported upper-respiratory tract symptoms, and self-reported wellness parameters. Seventeen participants (peak oxygen uptake 53.2 ± 9.0 mL·kg-1·min-1) completed a 10-day controlled-hyperthermia HA protocol, and a heat stress test both before (HST1) and after (HST2) HA (33°C, 65% relative humidity). Resting saliva samples were collected at HST1, day 3 and 7 of the HA protocol, HST2, and at 5 ± 1 days post-HA. Upper-respiratory tract symptom data were collected weekly from one week prior to HA until three weeks post HA, and wellness ratings were reported daily throughout HA. HA successfully induced physiological adaptations, with a lower end-exercise rectal temperature and heart rate and higher whole-body sweat rate at HST2 compared to HST1. In contrast, resting saliva flow rate, s-IgA concentration, s-cortisol concentration, and s-cortisol secretion rate remained unchanged (n = 11-14, P = 0.10-0.48). Resting s-IgA secretion rate increased by 39% from HST1 to HST2 (n = 14, P = 0.03). No changes were observed in self-reported upper respiratory tract symptoms and wellness ratings. In conclusion, controlled-hyperthermia HA did not negatively affect resting s-IgA and s-cortisol, self-reported upper-respiratory tract symptoms, and self-reported wellness parameters in recreational athletes.

11.
Biology (Basel) ; 11(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009849

RESUMO

During the early stage of a fire, a process operator often acts as the first responder and may be exposed to high heat radiation levels. The present limit values of long- (>15 min) and short-term exposure (<5 min), 1.0 and 1.5 kW/m2, respectively, have been set using physiological models and manikin measurements. Since human validation is essentially lacking, this study investigated whether operators' protective clothing offers sufficient protection during a short-term deployment. Twelve professional firefighters were exposed to three radiation levels (1.5, 2.0, and 2.5 kW/m2) when wearing certified protective clothing in front of a heat radiation panel in a climatic chamber (20 °C; 50% RH). The participants wore only briefs (male) or panties and a bra (female) and a T-shirt under the operators' clothing. Skin temperatures were continuously measured at the chest, belly, forearm, thigh, and knee. The test persons had to stop if any skin temperature reached 43 °C, at their own request, or when 5 min of exposure was reached. The experiments showed that people in operators' clothing can be safely exposed for 5 min to 1.5 kW/m2, up to 3 min to 2.0 kW/m2, and exposure to 2.5 kW/m2 or above must be avoided unless the clothing can maintain an air gap.

12.
Int Arch Occup Environ Health ; 95(1): 249-258, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34089351

RESUMO

PURPOSE: Over the last few decades, a global increase in both cold and heat extremes has been observed with significant impacts on human mortality. Although it is well-identified that older individuals (> 65 years) are most prone to temperature-related mortality, there is no consensus on the effect of sex. The current study investigated if sex differences in temperature-related mortality exist in the Netherlands. METHODS: Twenty-three-year ambient temperature data of the Netherlands were combined with daily mortality data which were subdivided into sex and three age classes (< 65 years, 65-80 years, ≥ 80 years). Distributed lag non-linear models were used to analyze the effect of ambient temperature on mortality and determine sex differences in mortality attributable to the cold and heat, which is defined as mean daily temperatures below and above the Minimum Mortality Temperature, respectively. RESULTS: Attributable fractions in the heat were higher in females, especially in the oldest group under extreme heat (≥ 97.5th percentile), whilst no sex differences were found in the cold. Cold- and heat-related mortality was most prominent in the oldest age group (≥ 80 years) and to a smaller extent in the age group between 65-80 years. In the age group < 65 years temperature-related mortality was only significant for males in the heat. CONCLUSION: Mortality in the Netherlands represents the typical V- or hockey-stick shaped curve with a higher daily mortality in the cold and heat than at milder temperatures in both males and females, especially in the age group ≥ 80 years. Heat-related mortality was higher in females than in males, especially in the oldest age group (≥ 80 years) under extreme heat, whilst in the cold no sex differences were found. The underlying cause may be of physiological or behavioral nature, but more research is necessary.


Assuntos
Temperatura Baixa , Caracteres Sexuais , Idoso , Idoso de 80 Anos ou mais , Feminino , Temperatura Alta , Humanos , Masculino , Mortalidade , Países Baixos/epidemiologia , Temperatura
13.
Temperature (Austin) ; 8(3): 209-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485618

RESUMO

The environmental conditions during the Tokyo Olympic and Paralympic Games are expected to be challenging, which increases the risk for participating athletes to develop heat-related illnesses and experience performance loss. To allow safe and optimal exercise performance of Dutch elite athletes, the Thermo Tokyo study aimed to determine thermoregulatory responses and performance loss among elite athletes during exercise in the heat, and to identify personal, sports-related, and environmental factors that contribute to the magnitude of these outcomes. For this purpose, Dutch Olympic and Paralympic athletes performed two personalized incremental exercise tests in simulated control (15°C, relative humidity (RH) 50%) and Tokyo (32°C, RH 75%) conditions, during which exercise performance and (thermo)physiological parameters were obtained. Thereafter, athletes were invited for an additional visit to conduct anthropometric, dual-energy X-ray absorptiometry (DXA), and 3D scan measurements. Collected data also served as input for a thermophysiological computer simulation model to estimate the impact of a wider range of environmental conditions on thermoregulatory responses. Findings of this study can be used to inform elite athletes and their coaches on how heat impacts their individual (thermo)physiological responses and, based on these data, advise which personalized countermeasures (i.e. heat acclimation, cooling interventions, rehydration plan) can be taken to allow safe and maximal performance in the challenging environmental conditions of the Tokyo 2020 Olympic and Paralympic Games.

14.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R295-R302, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259026

RESUMO

Critical environmental limits are environmental thresholds above which heat gain exceeds heat loss and body core temperature (Tc) cannot be maintained at equilibrium. Those limits can be represented as critical wet-bulb globe temperature (WBGTcrit), a validated index that represents the overall thermal environment. Little is known about WBGTcrit at rest and during low-to-moderate intensity exercise, or sex differences in WBGTcrit, in unacclimated young adults. The following hypotheses were tested: 1) WBGTcrit progressively decreases as metabolic heat production (Mnet) increases, 2) no sex differences in WBGTcrit occur at rest, and 3) WBGTcrit is lower during absolute-intensity exercise but higher at relative intensities in women than in men. Thirty-six participants [19 men (M)/17 women (W); 23 ± 4 yr] were tested at rest, during light, absolute-intensity exercise (10 W), or during moderate, relative-intensity exercise [30% maximal oxygen consumption (V̇o2max)] in an environmental chamber. Dry-bulb temperature was clamped as relative humidity or ambient water vapor pressure was increased until an upward inflection was observed in Tc (rectal or esophageal temperature). Sex-aggregated WBGTcrit was lower during 10 W (32.9°C ± 1.7°C, P < 0.0001) and 30% V̇o2max (31.6°C ± 1.1°C, P < 0.0001) exercise versus at rest (35.3°C ± 0.8°C), and lower at 30% V̇o2max versus 10 W (P = 0.01). WBGTcrit was similar between sexes at rest (35.6°C ± 0.8°C vs. 35.0°C ± 0.8°C, P = 0.83), but lower during 10 W (31.9°C ± 1.7°C vs. 34.1°C ± 0.3°C, P < 0.01) and higher during 30% V̇o2max (32.4°C ± 0.8°C vs. 30.8°C ± 0.9°C, P = 0.03) exercise in women versus men. These findings suggest that WBGTcrit decreases as Mnet increases, no sex differences occur in WBGTcrit at rest, and sex differences in WBGTcrit during exercise depend on absolute versus relative intensities.


Assuntos
Exercício Físico/fisiologia , Temperatura Alta , Caracteres Sexuais , Termogênese/fisiologia , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Feminino , Humanos , Umidade , Masculino , Adulto Jovem
16.
Physiol Rev ; 101(4): 1873-1979, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33829868

RESUMO

A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Transtornos de Estresse por Calor/fisiopatologia , Resposta ao Choque Térmico , Água/metabolismo , Aclimatação/fisiologia , Animais , Temperatura Alta , Humanos , Desempenho Psicomotor , Sudorese , Perda Insensível de Água
17.
Eur J Appl Physiol ; 121(6): 1593-1606, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33646425

RESUMO

PURPOSE: The magnitude of heat acclimation (HA) adaptations varies largely among individuals, but it remains unclear what factors influence this variability. This study compared individual characteristics related to fitness status and body dimensions of low-, medium-, and high responders to HA. METHODS: Twenty-four participants (9 female, 15 male; maximum oxygen uptake [[Formula: see text]O2peak,kg] 52 ± 9 mL kg-1 min-1) completed 10 daily controlled-hyperthermia HA sessions. Adaptations were evaluated by heat stress tests (HST; 35 min cycling 1.5 W  kg-1; 33 °C, 65% relative humidity) pre- and post-HA. Low-, medium-, and high responder groups were determined based on tertiles (n = 8) of individual adaptations for resting rectal temperature (Tre), exercise-induced Tre rise (ΔTre), whole-body sweat rate (WBSR), and heart rate (HR). RESULTS: Body dimensions (p > 0.3) and [Formula: see text]O2peak,kg (p > 0.052) did not differentiate low-, medium-, and high responders for resting Tre or ΔTre. High WBSR responders had a larger body mass and lower body surface area-to-mass ratio than low responders (83.0 ± 9.3 vs 67.5 ± 7.3 kg; 249 ± 12 vs 274 ± 15 cm2 kg-1, respectively; p < 0.005). Conversely, high HR responders had a smaller body mass than low responders (69.2 ± 6.8 vs 83.4 ± 9.4 kg; p = 0.02). [Formula: see text]O2peak,kg did not differ among levels of responsiveness for WBSR and HR (p > 0.3). CONCLUSION: Individual body dimensions influenced the magnitude of sudomotor and cardiovascular adaptive responses, but did not differentiate Tre adaptations to HA. The influence of [Formula: see text]O2peak,kg on the magnitude of adaptations was limited.


Assuntos
Aclimatação/fisiologia , Resposta ao Choque Térmico , Aptidão Física , Adulto , Antropometria , Regulação da Temperatura Corporal , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Sudorese/fisiologia
19.
Front Physiol ; 11: 225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256386

RESUMO

It is essentially unknown how humans adapt or will adapt to heat stress caused by climate change over a long-term interval. A possible indicator of adaptation may be the minimum mortality temperature (MMT), which is defined as the mean daily temperature at which the lowest mortality occurs. Another possible indicator may be the heat sensitivity, i.e., the percentage change in mortality per 1°C above the MMT threshold, or heat attributable fraction (AF), i.e., the percentage relative excess mortality above MMT. We estimated MMT and heat sensitivity/AF over a period of 23 years for older adults (≥65 years) in the Netherlands using three commonly used methods. These methods are segmented Poisson regression (SEG), constrained segmented distributed lag models (CSDL), and distributed lag non-linear models (DLNM). The mean ambient temperature increased by 0.03°C/year over the 23 year period. The calculated mean MMT over the 23-year period differed considerably between methods [16.4 ± 1.2°C (SE) (SEG), 18.9 ± 0.5°C (CSDL), and 15.3 ± 0.4°C DLNM]. MMT increased during the observed period according to CSDL (0.11 ± 0.05°C/year) and DLNM (0.15 ± 0.02°C/year), but not with SEG. The heat sensitivity, however, decreased for the latter method (0.06%/°C/year) and did not change for CSDL. Heat AF was calculated for the DLNM method and decreased with 0.07%/year. Based on these results we conclude that the susceptibility of humans to heat decreases over time, regardless which method was used, because human adaptation is shown by either an increase in MMT (CSDL and DLNM) or a decrease in heat sensitivity for unchanged MMT (SEG). Future studies should focus on what factors (e.g., physiological, behavioral, technological, or infrastructural adaptations) influence human adaptation the most, so it can be promoted through adaptation policies. Furthermore, future studies should keep in mind that the employed method influences the calculated MMT, which hampers comparability between studies.

20.
Front Physiol ; 10: 414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068829

RESUMO

The Tokyo Olympics and Paralympic games in 2020 will be held in hot and humid conditions. Heat acclimation (in a climatic chamber) or heat acclimatization (natural environment) is essential to prepare the (endurance) athletes and reduce the performance loss associated with work in the heat. Based on the 1990-2018 hourly meteorological data of Tokyo and the derived wet bulb globe temperature (WBGT) (Liljegren method), Heat Index and Humidex, it is shown that the circumstances prior to the games are likely not sufficiently hot to fully adapt to the heat. For instance, the WBGT 2 weeks prior to the games at the hottest moment of the day (13:00 h) is 26.4 ± 2.9°C and 28.6 ± 2.8°C during the games. These values include correction for global warming. The daily variation in thermal strain indices during the Tokyo Olympics (WBGT varying by 4°C between the early morning and the early afternoon) implies that the time of day of the event has a considerable impact on heat strain. The Paralympics heat strain is about 1.5°C WBGT lower than the Olympics, but may still impose considerable heat strain since the Paralympic athletes often have a reduced ability to thermoregulate. It is therefore recommended to acclimate about 1 month prior to the Olympics under controlled conditions set to the worst-case Tokyo climate and re-acclimatize in Japan or surroundings just prior to the Olympics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...