Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; : e20455, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747009

RESUMO

Plant breeders are generally reluctant to cross elite crop cultivars with their wild relatives to introgress novel desirable traits due to associated negative traits such as pod shattering. This results in a genetic bottleneck that could be reduced through better understanding of the genomic locations of the gene(s) controlling this trait. We integrated information on parental genomes, pod shattering data from multiple environments, and high-density genetic linkage maps to identify pod shattering quantitative trait loci (QTLs) in three lentil interspecific recombinant inbred line populations. The broad-sense heritability on a multi-environment basis varied from 0.46 (in LR-70, Lens culinaris × Lens odemensis) to 0.77 (in LR-68, Lens orientalis × L. culinaris). Genetic linkage maps of the interspecific populations revealed reciprocal translocations of chromosomal segments that differed among the populations, and which were associated with reduced recombination. LR-68 had a 2-5 translocation, LR-70 had 1-5, 2-6, and 2-7 translocations, and LR-86 had a 2-7 translocation in one parent relative to the other. Segregation distortion was also observed for clusters of single nucleotide polymorphisms on multiple chromosomes per population, further affecting introgression. Two major QTL, on chromosomes 4 and 7, were repeatedly detected in the three populations and contain several candidate genes. These findings will be of significant value for lentil breeders to strategically access novel superior alleles while minimizing the genetic impact of pod shattering from wild parents.

2.
Front Plant Sci ; 14: 1260393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790790

RESUMO

Soybean is an important global source of plant-based protein. A persistent trend has been observed over the past two decades that soybeans grown in western Canada have lower seed protein content than soybeans grown in eastern Canada. In this study, 10 soybean genotypes ranging in average seed protein content were grown in an eastern location (control) and three western locations (experimental) in Canada. Seed protein and oil contents were measured for all lines in each location. RNA-sequencing and differential gene expression analysis were used to identify differentially expressed genes that may account for relatively low protein content in western-grown soybeans. Differentially expressed genes were enriched for ontologies and pathways that included amino acid biosynthesis, circadian rhythm, starch metabolism, and lipid biosynthesis. Gene ontology, pathway mapping, and quantitative trait locus (QTL) mapping collectively provide a close inspection of mechanisms influencing nitrogen assimilation and amino acid biosynthesis between soybeans grown in the East and West. It was found that western-grown soybeans had persistent upregulation of asparaginase (an asparagine hydrolase) and persistent downregulation of asparagine synthetase across 30 individual differential expression datasets. This specific difference in asparagine metabolism between growing environments is almost certainly related to the observed differences in seed protein content because of the positive correlation between seed protein content at maturity and free asparagine in the developing seed. These results provided pointed information on seed protein-related genes influenced by environment. This information is valuable for breeding programs and genetic engineering of geographically optimized soybeans.

3.
Plants (Basel) ; 11(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145738

RESUMO

Over the past two decades soybeans grown in western Canada have persistently had lower seed protein than those grown in eastern Canada. To understand the discrepancy in seed protein content between eastern- and western-grown soybeans, RNA-seq and differential expression analysis have been investigated. Ten soybean genotypes, ranging from low to high in seed protein content, were grown in four locations across eastern (Ottawa) and western (Morden, Brandon, and Saskatoon) Canada. Differential expression analysis revealed 34 differentially expressed genes encoding Glycine max Sugars Will Eventually be Exported Transporters (GmSWEETs), including paralogs GmSWEET29 and GmSWEET34 (AtSWEET2 homologs) that were consistently upregulated across all ten genotypes in each of the western locations over three years. GmSWEET29 and GmSWEET34 are likely candidates underlying the lower seed protein content of western soybeans. GmSWEET20 (AtSWEET12 homolog) was downregulated in the western locations and may also play a role in lower seed protein content. These findings are valuable for improving soybean agriculture in western growing regions, establishing more strategic and efficient agricultural practices.

4.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613666

RESUMO

Soybean (Glycine max (L.) Merr.) is among the most valuable crops based on its nutritious seed protein and oil. Protein quality, evaluated as the ratio of glycinin (11S) to ß-conglycinin (7S), can play a role in food and feed quality. To help uncover the underlying differences between high and low protein soybean varieties, we performed differential expression analysis on high and low total protein soybean varieties and high and low 11S soybean varieties grown in four locations across Eastern and Western Canada over three years (2018-2020). Simultaneously, ten individual differential expression datasets for high vs. low total protein soybeans and ten individual differential expression datasets for high vs. low 11S soybeans were assessed, for a total of 20 datasets. The top 15 most upregulated and the 15 most downregulated genes were extracted from each differential expression dataset and cross-examination was conducted to create shortlists of the most consistently differentially expressed genes. Shortlisted genes were assessed for gene ontology to gain a global appreciation of the commonly differentially expressed genes. Genes with roles in the lipid metabolic pathway and carbohydrate metabolic pathway were differentially expressed in high total protein and high 11S soybeans in comparison to their low total protein and low 11S counterparts. Expression differences were consistent between East and West locations with the exception of one, Glyma.03G054100. These data are important for uncovering the genes and biological pathways responsible for the difference in seed protein between high and low total protein or 11S cultivars.


Assuntos
Glycine max , Proteínas de Soja , Glycine max/genética , Glycine max/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Canadá , Sementes/genética , Sementes/química
5.
BMC Plant Biol ; 19(1): 177, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046671

RESUMO

BACKGROUND: Early flowering and maturing flax (Linum usitatissimum L.) cultivars are better adapted than lines with a longer reproductive phase for the short growing season of the northern Canadian Prairies. We examined the role of long days (LD) and short days (SD) on the time taken to flower in five established flax cultivars and three mutant-derived F10 lines. The photoperiod sensitivity of these eight different genotypes was determined using a reciprocal transfer experiment involving weekly transfers between LD and SD environments. RESULTS: The genotypes tested had varying degrees of photoperiod sensitivity and demonstrated reduced time to flowering if exposed to LD environments prior to a critical time point. The duration of each of the three phases of vegetative growth differed among the genotypes studied. Transfers from SD to LD shortened the vegetative stage, reduced time to flowering, and extended the reproductive phase in the genotypes studied. Mutant-derived lines RE1/2/3 flowered significantly earlier compared to CDC Sorrel, CDC Bethune, Flanders, Prairie Thunder, and Royal. Modelling of the flowering times indicated that transferring the cultivars from SD to LD increased the photoperiod sensitive time; however, different reproductive phases for mutant lines were not defined as parsimonious models were not identified. Expression of the putative flax homologs for CONSTANS (CO), FLOWERING LOCUS T (FT), and GIGANTEA (GI) was examined in the leaves of Royal and RE1/2/3 plants at 10, 15, 19 and 29 days after planting. Expression of putative FT homologs was detected in all three early-flowering lines but expression was negligible, or not detected, in Royal. CONCLUSIONS: Models defining the three phases of reproductive development were established for the five cultivars studied; however, it was not possible to identify these phases for the three early flowering and photoperiod insensitive epimutant-derived lines. A putative flax homolog of FT, a key regulator of flowering time, is more highly expressed in RE plants, which may condition the day-length insensitivity in the early flowering 'epimutant' lines.


Assuntos
Linho/efeitos dos fármacos , Linho/efeitos da radiação , Fotoperíodo , Azacitidina/farmacologia , Flores/crescimento & desenvolvimento
6.
Plant Biotechnol J ; 17(1): 275-288, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890030

RESUMO

Whole-genome sequencing-based bulked segregant analysis (BSA) for mapping quantitative trait loci (QTL) provides an efficient alternative approach to conventional QTL analysis as it significantly reduces the scale and cost of analysis with comparable power to QTL detection using full mapping population. We tested the application of next-generation sequencing (NGS)-based BSA approach for mapping QTLs for ascochyta blight resistance in chickpea using two recombinant inbred line populations CPR-01 and CPR-02. Eleven QTLs in CPR-01 and six QTLs in CPR-02 populations were mapped on chromosomes Ca1, Ca2, Ca4, Ca6 and Ca7. The QTLs identified in CPR-01 using conventional biparental mapping approach were used to compare the efficiency of NGS-based BSA in detecting QTLs for ascochyta blight resistance. The QTLs on chromosomes Ca1, Ca4, Ca6 and Ca7 overlapped with the QTLs previously detected in CPR-01 using conventional QTL mapping method. The QTLs on chromosome Ca4 were detected in both populations and overlapped with the previously reported QTLs indicating conserved region for ascochyta blight resistance across different chickpea genotypes. Six candidate genes in the QTL regions identified using NGS-based BSA on chromosomes Ca2 and Ca4 were validated for their association with ascochyta blight resistance in the CPR-02 population. This study demonstrated the efficiency of NGS-based BSA as a rapid and cost-effective method to identify QTLs associated with ascochyta blight in chickpea.


Assuntos
Ascomicetos , Cicer/genética , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Cicer/imunologia , Cicer/microbiologia , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/imunologia
7.
Plants (Basel) ; 7(3)2018 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30205575

RESUMO

Plant breeders and agricultural scientists of the 21st century are challenged to increase the yield potentials of crops to feed the growing world population. Climate change, the resultant stresses and increasing nutrient deficiencies are factors that are to be considered in designing modern plant breeding pipelines. Underutilized food legumes have the potential to address these issues and ensure food security in developing nations of the world. Food legumes in the past have drawn limited research funding and technological attention when compared to cereal crops. Physiological breeding strategies that were proven to be successful in cereals are to be adapted to legume crop improvement to realize their potential. The gap between breeders and physiologists should be narrowed by collaborative approaches to understand complex traits in legumes. This review discusses the potential of physiology based approaches in food legume breeding and how they impact yield gains and abiotic stress tolerance in these crops. The influence of roots and root system architectures in food legumes' breeding is also discussed. Molecular breeding to map the relevant physiological traits and the potentials of gene editing those traits are detailed. It is imperative to unlock the potentials of these underutilized crops to attain sustainable environmental and nutritional food security.

8.
BMC Plant Biol ; 18(1): 172, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115030

RESUMO

BACKGROUND: The objective of this research was to map quantitative trait loci (QTLs) of multiple traits of breeding importance in pea (Pisum sativum L.). Three recombinant inbred line (RIL) populations, PR-02 (Orb x CDC Striker), PR-07 (Carerra x CDC Striker) and PR-15 (1-2347-144 x CDC Meadow) were phenotyped for agronomic and seed quality traits under field conditions over multiple environments in Saskatchewan, Canada. The mapping populations were genotyped using genotyping-by-sequencing (GBS) method for simultaneous single nucleotide polymorphism (SNP) discovery and construction of high-density linkage maps. RESULTS: After filtering for read depth, segregation distortion, and missing values, 2234, 3389 and 3541 single nucleotide polymorphism (SNP) markers identified by GBS in PR-02, PR-07 and PR-15, respectively, were used for construction of genetic linkage maps. Genetic linkage groups were assigned by anchoring to SNP markers previously positioned on these linkage maps. PR-02, PR-07 and PR-15 genetic maps represented 527, 675 and 609 non-redundant loci, and cover map distances of 951.9, 1008.8 and 914.2 cM, respectively. Based on phenotyping of the three mapping populations in multiple environments, 375 QTLs were identified for important traits including days to flowering, days to maturity, lodging resistance, Mycosphaerella blight resistance, seed weight, grain yield, acid and neutral detergent fiber concentration, seed starch concentration, seed shape, seed dimpling, and concentration of seed iron, selenium and zinc. Of all the QTLs identified, the most significant in terms of explained percentage of maximum phenotypic variance (PVmax) and occurrence in multiple environments were the QTLs for days to flowering (PVmax = 47.9%), plant height (PVmax = 65.1%), lodging resistance (PVmax = 35.3%), grain yield (PVmax = 54.2%), seed iron concentration (PVmax = 27.4%), and seed zinc concentration (PVmax = 43.2%). CONCLUSION: We have identified highly significant and reproducible QTLs for several agronomic and seed quality traits of breeding importance in pea. The QTLs identified will be the basis for fine mapping candidate genes, while some of the markers linked to the highly significant QTLs are useful for immediate breeding applications.


Assuntos
Ascomicetos/fisiologia , Mapeamento Cromossômico , Ligação Genética , Genótipo , Pisum sativum/genética , Locos de Características Quantitativas , Resistência à Doença/genética , Pisum sativum/fisiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
9.
Plant Physiol ; 175(2): 802-815, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28818860

RESUMO

In climates that experience short growing seasons due to drought, heat, or end-of-season frost, early flowering is a highly desirable trait for chickpea (Cicer arietinum). In this study, we mapped, sequenced, and characterized Early flowering3 (Efl3), an ortholog of Arabidopsis (Arabidopsis thaliana) EARLY FLOWERING3 (ELF3) that confers early flowering in chickpea. In a recombinant inbred line population derived from a cross between CDC Frontier and ICCV 96029, this gene was mapped to the site of a quantitative trait locus on Ca5 that explained 59% of flowering time variation under short days. Sequencing of ELF3 in ICCV 96029 revealed an 11-bp deletion in the first exon that was predicted to result in a premature stop codon. The effect of this mutation was tested by transgenic complementation in the Arabidopsis elf3-1 mutant, with the CDC Frontier form of CaELF3a partially complementing elf3-1 while the ICCV 96029 form had no effect on flowering time. While induction of FLOWERING LOCUS T homologs was very early in ICCV 96029, an analysis of circadian clock function failed to show any clear loss of rhythm in the expression of clock genes in ICCV 96029 grown under continuous light, suggesting redundancy with other ELF3 homologs or possibly an alternative mode of action for this gene in chickpea. The 11-bp deletion was associated with early flowering in global chickpea germplasm but was not widely distributed, indicating that this mutation arose relatively recently.


Assuntos
Proteínas de Arabidopsis/genética , Cicer/genética , Relógios Circadianos/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Cicer/fisiologia , Flores/genética , Flores/fisiologia , Loci Gênicos , Fenótipo , Filogenia , Plântula/genética , Plântula/fisiologia , Deleção de Sequência , Fatores de Tempo
10.
Genome ; 59(6): 413-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27244453

RESUMO

In western Canada, chickpea (Cicer arietinum L.) production is challenged by short growing seasons and infestations with ascochyta blight. Research was conducted to determine the genetic basis of the association between flowering time and reaction to ascochyta blight in chickpea. Ninety-two chickpea recombinant inbred lines (RILs) developed from a cross between ICCV 96029 and CDC Frontier were evaluated for flowering responses and ascochyta blight reactions in growth chambers and fields at multiple locations and during several years. A wide range of variation was exhibited by the RILs for days to flower, days to maturity, node of first flowering, plant height, and ascochyta blight resistance. Moderate to high broad sense heritability was estimated for ascochyta blight reaction (H(2) = 0.14-0.34) and for days to flowering (H(2) = 0.45-0.87) depending on the environments. Negative correlations were observed among the RILs for days to flowering and ascochyta blight resistance, ranging from r = -0.21 (P < 0.05) to -0.58 (P < 0.0001). A genetic linkage map consisting of eight linkage groups was developed using 349 SNP markers. Seven QTLs for days to flowering were identified that individually explained 9%-44% of the phenotypic variation. Eight QTLs were identified for ascochyta blight resistance that explained phenotypic variation ranging from 10% to 19%. Clusters of QTLs for days to flowering and ascochyta blight resistances were found on chromosome 3 at the interval of 8.6-23.11 cM and on chromosome 8 at the interval of 53.88-62.33 cM.


Assuntos
Ascomicetos/fisiologia , Cicer/genética , Cicer/microbiologia , Locos de Características Quantitativas , Canadá , Mapeamento Cromossômico , Cicer/crescimento & desenvolvimento , Cicer/imunologia , Cruzamentos Genéticos , Resistência a Medicamentos , Flores/crescimento & desenvolvimento , Ligação Genética , Marcadores Genéticos/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
11.
Front Plant Sci ; 7: 478, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148306

RESUMO

Photoperiod is one of the major environmental factors determining time to flower initiation and first flower appearance in plants. In chickpea, photoperiod sensitivity, expressed as delayed to flower under short days (SD) as compared to long days (LD), may change with the growth stage of the crop. Photoperiod-sensitive and -insensitive phases were identified by experiments in which individual plants were reciprocally transferred in a time series from LD to SD and vice versa in growth chambers. Eight chickpea accessions with differing degrees of photoperiod sensitivity were grown in two separate chambers, one of which was adjusted to LD (16 h light/8 h dark) and the other adjusted to SD (10 h light/14 h dark), with temperatures of 22/16°C (12 h light/12 h dark) in both chambers. The accessions included day-neutral (ICCV 96029 and FLIP 98-142C), intermediate (ICC 15294, ICC 8621, ILC 1687, and ICC 8855), and photoperiod-sensitive (CDC Corinne and CDC Frontier) responses. Control plants were grown continuously under the respective photoperiods. Reciprocal transfers of plants between the SD and LD photoperiod treatments were made at seven time points after sowing, customized for each accession based on previous data. Photoperiod sensitivity was detected in intermediate and photoperiod-sensitive accessions. For the day-neutral accession, ICCV 96029, there was no significant difference in the number of days to flowering of the plants grown under SD and LD as well as subsequent transfers. In photoperiod-sensitive accessions, three different phenological phases were identified: a photoperiod-insensitive pre-inductive phase, a photoperiod-sensitive inductive phase, and a photoperiod-insensitive post-inductive phase. The photoperiod-sensitive phase extends after flower initiation to full flower development. Results from this research will help to develop cultivars with shorter pre-inductive photoperiod-insensitive and photoperiod-sensitive phases to fit to regions with short growing seasons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...