Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608158

RESUMO

Transferring nanocrystals (NCs) from the laboratory environment toward practical applications has raised new challenges. HgTe appears as the most spectrally tunable infrared colloidal platform. Its low-temperature synthesis reduces the growth energy cost yet also favors sintering. Once coupled to a read-out circuit, the Joule effect aggregates the particles, leading to a poorly defined optical edge and large dark current. Here, we demonstrate that CdS shells bring the expected thermal stability (no redshift upon annealing, reduced tendency to form amalgams, and preservation of photoconduction after an atomic layer deposition process). The electronic structure of these confined particles is unveiled using k.p self-consistent simulations showing a significant exciton binding energy of ∼200 meV. After shelling, the material displays a p-type behavior that favors the generation of photoconductive gain. The latter is then used to increase the external quantum efficiency of an infrared imager, which now reaches 40% while presenting long-term stability.

2.
ACS Nano ; 18(6): 4903-4910, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286025

RESUMO

Semiconductor colloidal nanocrystals are excellent light emitters in terms of efficiency and spectral control. They can be integrated with a metasurface to make ultrathin photoluminescent devices with a reduced amount of active material and perform complex functionalities such as beam shaping or polarization control. To design such a metasurface, a quantitative model of the emitted power is needed. Here, we report the design, fabrication, and characterization of a ∼300 nm thick light-emitting device combining a plasmonic metasurface with an ensemble of nanoplatelets. The source has been designed with a methodology based on a local form of Kirchhoff's law. The source displays record high directionality and absorptivity.

3.
Nano Lett ; 23(22): 10228-10235, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930320

RESUMO

Achieving pure single-photon emission is essential for a range of quantum technologies, from quantum computing to quantum key distribution to quantum metrology. Among solid-state quantum emitters, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have attracted considerable interest due to their structural and optical properties, which make them attractive candidates for single-photon sources (SPSs). However, their practical utilization has been hampered by environment-induced instabilities. In this study, we fabricate and characterize in a systematic manner Zn-treated CsPbBr3 colloidal NCs obtained through Zn2+ ion doping at the Pb-site, demonstrating improved stability under dilution and illumination. The doped NCs exhibit high single-photon purity, reduced blinking on a submillisecond time scale, and stability of the bright state even at excitation powers well above saturation. Our findings highlight the potential of this synthesis approach to optimize the performance of LHP-based SPSs, opening up interesting prospects for their integration into nanophotonic systems for quantum technology applications.

4.
Nano Lett ; 23(18): 8539-8546, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37712683

RESUMO

Optoelectronic devices rely on conductive layers as electrodes, but they usually introduce optical losses that are detrimental to the device performances. While the use of transparent conductive oxides is established in the visible region, these materials show high losses at longer wavelengths. Here, we demonstrate a photodiode based on a metallic grating acting as an electrode. The grating generates a multiresonant photonic structure over the diode stack and allows strong broadband absorption. The obtained device achieves the highest performances reported so far for a midwave infrared nanocrystal-based detector, with external quantum efficiency above 90%, detectivity of 7 × 1011 Jones at 80 K at 5 µm, and a sub-100 ns time response. Furthermore, we demonstrate that combining different gratings with a single diode stack can generate a bias reconfigurable response and develop new functionalities such as band rejection.

5.
Nanoscale ; 15(35): 14651-14658, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37622447

RESUMO

Owing to their bright and tunable luminescence spectra, nanocrystals appear as a unique playground for light source design. Displays and lighting require white light sources that combine several narrow lines. As Kasha's rule prevents the emission of hot carriers, blends of multiple nanocrystal populations are currently the obvious strategy for broad-band source design. However, a few reports suggest that bicolor emission can also be obtained from a single particle even under weak excitation if a careful design of the exciton scattering mechanism sufficiently slows down its relaxation pathways. A key challenge remains to maintain quantum confinement for color tunability in the same structure, while simultaneously achieving a large size to leverage the critical, slower exciton diffusion or relaxation down to the ground state. Herein, we demonstrate that 2D nanoplatelets offer an original opportunity for the design of confined and large heterostructures. We demonstrate that bicolor emission is not limited to green-red pair and show that blue-yellow and purple-green emissions can be obtained from CdSe/CdTe/CdSe core/crown/crown and CdSe/CdS core/crown heterostructures, respectively.

6.
J Chem Phys ; 158(9): 094702, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889960

RESUMO

Narrow bandgap nanocrystals (NCs) are now used as infrared light absorbers, making them competitors to epitaxially grown semiconductors. However, these two types of materials could benefit from one another. While bulk materials are more effective in transporting carriers and give a high degree of doping tunability, NCs offer a larger spectral tunability without lattice-matching constraints. Here, we investigate the potential of sensitizing InGaAs in the mid-wave infrared throughout the intraband transition of self-doped HgSe NCs. Our device geometry enables the design of a photodiode remaining mostly unreported for intraband-absorbing NCs. Finally, this strategy allows for more effective cooling and preserves the detectivity above 108 Jones up to 200 K, making it closer to cryo-free operation for mid-infrared NC-based sensors.

7.
Chem Rev ; 123(7): 3543-3624, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36724544

RESUMO

The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.

8.
Nano Lett ; 23(4): 1363-1370, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36692377

RESUMO

As the field of nanocrystal-based optoelectronics matures, more advanced techniques must be developed in order to reveal the electronic structure of nanocrystals, particularly with device-relevant conditions. So far, most of the efforts have been focused on optical spectroscopy, and electrochemistry where an absolute energy reference is required. Device optimization requires probing not only the pristine material but also the material in its actual environment (i.e., surrounded by a transport layer and an electrode, in the presence of an applied electric field). Here, we explored the use of photoemission microscopy as a strategy for operando investigation of NC-based devices. We demonstrate that the method can be applied to a variety of materials and device geometries. Finally, we show that it provides direct access to the metal-semiconductor interface band bending as well as the distance over which the gate effect propagates in field-effect transistors.

9.
Nano Lett ; 22(21): 8779-8785, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36190814

RESUMO

While the integration of nanocrystals as an active medium for optoelectronic devices progresses, light management strategies are becoming required. Over recent years, several photonic structures (plasmons, cavities, mirrors, etc.) have been coupled to nanocrystal films to shape the absorption spectrum, tune the directionality, and so on. Here, we explore a photonic equivalent of the acoustic Helmholtz resonator and propose a design that can easily be fabricated. This geometry combines a strong electromagnetic field magnification and a narrow channel width compatible with efficient charge conduction despite hopping conduction. At 80 K, the device reaches a responsivity above 1 A·W-1 and a detectivity above 1011 Jones (3 µm cutoff) while offering a significantly faster time-response than vertical geometry diodes.

10.
Nat Commun ; 13(1): 5094, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042249

RESUMO

Nanocrystals (NCs) are now established building blocks for optoelectronics and their use as down converters for large gamut displays has been their first mass market. NC integration relies on a combination of green and red NCs into a blend, which rises post-growth formulation issues. A careful engineering of the NCs may enable dual emissions from a single NC population which violates Kasha's rule, which stipulates that emission should occur at the band edge. Thus, in addition to an attentive control of band alignment to obtain green and red signals, non-radiative decay paths also have to be carefully slowed down to enable emission away from the ground state. Here, we demonstrate that core/crown/crown 2D nanoplatelets (NPLs), made of CdSe/CdTe/CdSe, can combine a large volume and a type-II band alignment enabling simultaneously red and narrow green emissions. Moreover, we demonstrate that the ratio of the two emissions can be tuned by the incident power, which results in a saturation of the red emission due to non-radiative Auger recombination that affects this emission much stronger than the green one. Finally, we also show that dual-color, power tunable, emission can be obtained through an electrical excitation.

11.
ACS Nano ; 16(2): 2901-2909, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35107969

RESUMO

The crystal structure of atomically defined colloidal II-VI semiconductor nanoplatelets (NPLs) induces the self-assembly of organic ligands over thousands of square nanometers on the top and bottom basal planes of these anisotropic nanoparticles. NPLs curl into helices under the influence of the surface stress induced by these ligands. We demonstrate the control of the radii of NPL helices through the ligands described as an anchoring group and an aliphatic chain of a given length. A mechanical model accounting for the misfit strain between the inorganic core and the surface ligands predicts the helices' radii. We show how the chirality of the helices can be tuned by the ligands anchoring group and inverted from one population to another.

12.
Nano Lett ; 21(10): 4145-4151, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33956449

RESUMO

HgTe nanocrystals (NCs) enable broadly tunable infrared absorption, now commonly used to design light sensors. This material tends to grow under multipodic shapes and does not present well-defined size distributions. Such point generates traps and reduces the particle packing, leading to a reduced mobility. It is thus highly desirable to comprehensively explore the effect of the shape on their performance. Here, we show, using a combination of electron tomography and tight binding simulations, that the charge dissociation is strong within HgTe NCs, but poorly shape dependent. Then, we design a dual-gate field-effect-transistor made of tripod HgTe NCs and use it to generate a planar p-n junction, offering more tunability than its vertical geometry counterpart. Interestingly, the performance of the tripods is higher than sphere ones, and this can be correlated with a stronger Te excess in the case of sphere shapes which is responsible for a higher hole trap density.

13.
J Am Chem Soc ; 143(4): 1863-1872, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33471504

RESUMO

Two-dimensional II-VI semiconductor nanoplatelets (NPLs) present exceptionally narrow optical features due to their thickness defined at the atomic scale. Because thickness drives the band-edge energy, its control is of paramount importance. Here, we demonstrate that native carboxylate ligands can be replaced by halides that partially dissolve cadmium chalcogenide NPLs at the edges. The released monomers then recrystallize on the wide top and bottom facets, leading to an increase in NPL thickness. This dissolution/recrystallization method is used to increase NPL thickness to 9 ML while using 3 ML NPLs as the starting material. We also demonstrate that this method is not limited to CdSe and can be extended to CdS and CdTe to grow thick NPLs. When the metal halide precursor is introduced with a chalcogenide precursor on the NPLs, CdSe/CdSe, CdTe/CdTe, and CdSe/CdTe core/shell homo- and heterostructures are achieved. Finally, when an incomplete layer is grown, NPLs with steps are synthesized. These stress-free homostructures are comparable to type I heterostructures, leading to recombination of the exciton in the thicker area of the NPLs. Following the growth of core/crown and core/shell NPLs, it affords a new degree of freedom for the growth of structured NPLs with designed band engineering, which has so far been only achievable for heteromaterial nanostructures.

14.
Nano Lett ; 20(8): 6185-6190, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32662652

RESUMO

Mercury telluride (HgTe) nanocrystals are among the most versatile infrared (IR) materials with the absorption of lowest energy optical absorption which can be tuned from the visible to the terahertz range. Therefore, they have been extensively considered as near IR emitters and as absorbers for low-cost IR detectors. However, the electroluminescence of HgTe remains poorly investigated despite its ability to go toward longer wavelengths compared to traditional lead sulfide (PbS). Here, we demonstrate a light-emitting diode (LED) based on an indium tin oxide (ITO)/zinc oxide (ZnO)/ZnO-HgTe/PbS/gold-stacked structure, where the emitting layer consists of a ZnO/HgTe bulk heterojunction which drives the charge balance in the system. This LED has low turn-on voltage, long lifetime, and high brightness. Finally, we conduct short wavelength infrared (SWIR) active imaging, where illumination is obtained from a HgTe NC-based LED, and demonstrate moisture detection.


Assuntos
Nanopartículas , Óxido de Zinco , Ouro , Raios Infravermelhos , Iluminação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...