Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Multidiscip Healthc ; 16: 3465-3476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024130

RESUMO

Introduction: Human papillomavirus (HPV) infection is a widespread sexually transmitted infection linked to various types of cancer. Although vaccination against HPV is available, global HPV vaccination rates remain low. Aim: This study aimed to evaluate the awareness and knowledge of the HPV vaccine and to identify predictors associated with vaccine hesitancy among health college students at King Saud University, Saudi Arabia. Methods: A cross-sectional survey was distributed during December 2022 to students enrolled in health colleges. The survey link was randomly distributed via social media platforms and in-person interactions. The number of participants was 405 including both males and females. The data was analyzed using the Statistical Package for Social Sciences (SPSS). The correct response rate for all knowledge items was calculated, and they were stratified by gender and college. The association of vaccine hesitancy with sociodemographic characteristics was examined using logistic regression analysis. Results: The study found that approximately half of the students (49.9%) were aware of the HPV vaccine. However, only a small percentage of students answered all to all HPV knowledge items correctly. Additionally, only a small proportion (5.2%) reported receiving the vaccine. The overall HPV vaccine hesitancy was 59.1% (43.9% for female and 75.9% for male). The most common reasons for vaccine hesitancy was not knowing enough about it. Males were two times more likely than females to believe that they did not need the HPV vaccine. The odds for HPV vaccine hesitancy were greater among males and younger age groups compared to females and older age groups. Conclusion: This study underscores the importance of implementing university-wide interventions and educational campaigns to enhance awareness and knowledge of the HPV vaccine.

2.
Healthcare (Basel) ; 11(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900652

RESUMO

BACKGROUND: Human papillomavirus (HPV) is a common sexually transmitted infection globally. Investigating HPV awareness can reduce the burden of HPV-related cancers. AIMS: (1) Assessing HPV awareness and knowledge among health college students at King Saud University, (2) comparing these outcomes across sociodemographic characteristics. METHODS: A cross-sectional survey study was conducted from November to December 2022 and included 403 health college students. Associations of HPV awareness and knowledge with sociodemographic characteristics were assessed using logistic regression analysis and linear regression analysis, respectively. RESULTS: Only 60% of students were aware of HPV, with awareness higher among females, although their knowledge scores were comparable to males. The odds of awareness of HPV were greater among medical students compared to other colleges and among students belonging to older age groups compared to the younger age group (18-20). The odds of HPV awareness among hepatitis B vaccinated students were 2.10 times that among unvaccinated students (AOR = 2.10; 95% CI = 1.21, 3.64). CONCLUSIONS: The low level of HPV awareness among college students warrants the need for HPV educational campaigns to improve HPV awareness and to promote HPV vaccination in the community.

3.
Cell Rep Methods ; 2(3): 100181, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35229082

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-pseudotyped viruses are commonly used for quantifying antiviral drugs and neutralizing antibodies. Here, we describe the development of a hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudovirion, which is a non-replicating SARS-CoV-2 virus-like particle composed of viral structural proteins (S, M, N, and E) and an RNA genome derived from a fast-expressing alphaviral vector. We validated Ha-CoV-2 for rapid quantification of neutralization antibodies, antiviral drugs, and viral variants. In addition, as a proof of concept, we used Ha-CoV-2 to quantify the neutralizing antibodies from an infected and vaccinated individual and found that the one-dose vaccination with Moderna mRNA-1273 greatly increased the anti-serum titer by approximately 6-fold. The post-vaccination serum can neutralize all nine variants tested. These results demonstrate that Ha-CoV-2 can be used as a robust platform for the rapid quantification of neutralizing antibodies against SARS-CoV-2 and its emerging variants.


Assuntos
Alphavirus , COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Alphavirus/genética , Antivirais/farmacologia
4.
Viruses ; 13(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064525

RESUMO

Mucins and mucin-like molecules are highly glycosylated, high-molecular-weight cell surface proteins that possess a semi-rigid and highly extended extracellular domain. P-selectin glycoprotein ligand-1 (PSGL-1), a mucin-like glycoprotein, has recently been found to restrict HIV-1 infectivity through virion incorporation that sterically hinders virus particle attachment to target cells. Here, we report the identification of a family of antiviral cellular proteins, named the Surface-Hinged, Rigidly-Extended Killer (SHREK) family of virion inactivators (PSGL-1, CD43, TIM-1, CD34, PODXL1, PODXL2, CD164, MUC1, MUC4, and TMEM123) that share similar structural characteristics with PSGL-1. We demonstrate that SHREK proteins block HIV-1 infectivity by inhibiting virus particle attachment to target cells. In addition, we demonstrate that SHREK proteins are broad-spectrum host antiviral factors that block the infection of diverse viruses such as influenza A. Furthermore, we demonstrate that a subset of SHREKs also blocks the infectivity of a hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudovirus. These results suggest that SHREK proteins may be a part of host innate immunity against enveloped viruses.


Assuntos
COVID-19/imunologia , Infecções por HIV/imunologia , Glicoproteínas de Membrana/metabolismo , Ligação Viral , Animais , COVID-19/virologia , Cães , Células HEK293 , HIV-1/imunologia , Células HeLa , Interações entre Hospedeiro e Microrganismos , Humanos , Imunidade Inata , Células Madin Darby de Rim Canino , Mucinas/farmacologia , SARS-CoV-2/imunologia
5.
Cell Biosci ; 11(1): 100, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051873

RESUMO

BACKGROUND: The ongoing global pandemic of coronavirus disease 2019 (COVID-19) has resulted in the infection of over 128 million people and has caused over 2.8 million deaths as of April 2021 in more than 220 countries and territories. Currently, there is no effective treatment for COVID-19 to reduce mortality. We investigated the potential anti-coronavirus activities from an oral liquid of traditional medicine, Respiratory Detox Shot (RDS), which contains mostly herbal ingredients traditionally used to manage lung diseases. RESULTS: Here we report that RDS inhibited the infection of target cells by lenti-SARS-CoV, lenti-SARS-CoV-2, and hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudoviruses, and by infectious SARS-CoV-2 and derived Ha-CoV-2 variants including B.1.1.7, B.1.351, P.1, B.1.429, B.1.2, B.1.494, B.1.1.207, B.1.258, and B.1.1.298. We further demonstrated that RDS directly inactivates the infectivity of SARS-CoV-2 virus particles. In addition, we found that RDS can also block the infection of target cells by Influenza A virus. CONCLUSIONS: These results suggest that RDS may broadly inhibit the infection of respiratory viruses.

6.
bioRxiv ; 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33564770

RESUMO

Mucins and mucin-like molecules are highly glycosylated, high-molecular-weight cell surface proteins that possess a semi-rigid and highly extended extracellular domain. P-selectin glycoprotein ligand-1 (PSGL-1), a mucin-like glycoprotein, has recently been found to restrict HIV-1 infectivity through virion incorporation that sterically hinders virus particle attachment to target cells. Here, we report the identification of a family of antiviral cellular proteins, named the Surface-Hinged, Rigidly-Extended Killer (SHREK) family of virion inactivators (PSGL-1, CD43, TIM-1, CD34, PODXL1, PODXL2, CD164, MUC1, MUC4, and TMEM123), that share similar structural characteristics with PSGL-1. We demonstrate that SHREK proteins block HIV-1 infectivity by inhibiting virus particle attachment to target cells. In addition, we demonstrate that SHREK proteins are broad-spectrum host antiviral factors that block the infection of diverse viruses such as influenza A. Furthermore, we demonstrate that a subset of SHREKs also blocks the infectivity of a hybrid alphavirus-SARS-CoV-2 virus-like particle. These results suggest that SHREK proteins may be a part of host innate immunity against enveloped viruses.

7.
bioRxiv ; 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511349

RESUMO

P-selectin glycoprotein ligand-1 (PSGL-1) is a cell surface glycoprotein that binds to P-, E-, and L-selectins to mediate the tethering and rolling of immune cells on the surface of the endothelium for cell migration into inflamed tissues. PSGL-1 has been identified as an interferon-γ (INF-γ)-regulated factor that restricts HIV-1 infectivity, and has recently been found to possess broad-spectrum antiviral activities. Here we report that the expression of PSGL-1 in virus-producing cells impairs the incorporation of SARS-CoV and SARS-CoV-2 spike (S) glycoproteins into pseudovirions and blocks virus attachment and infection of target cells. These findings suggest that PSGL-1 may potentially inhibit coronavirus replication in PSGL-1+ cells.

8.
Proc Natl Acad Sci U S A ; 117(17): 9537-9545, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32273392

RESUMO

P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric, mucin-like, 120-kDa glycoprotein that binds to P-, E-, and L-selectins. PSGL-1 is expressed primarily on the surface of lymphoid and myeloid cells and is up-regulated during inflammation to mediate leukocyte tethering and rolling on the surface of endothelium for migration into inflamed tissues. Although it has been reported that PSGL-1 expression inhibits HIV-1 replication, the mechanism of PSGL-1-mediated anti-HIV activity remains to be elucidated. Here we report that PSGL-1 in virions blocks the infectivity of HIV-1 particles by preventing the binding of particles to target cells. This inhibitory activity is independent of the viral glycoprotein present on the virus particle; the binding of particles bearing the HIV-1 envelope glycoprotein or vesicular stomatitis virus G glycoprotein or even lacking a viral glycoprotein is impaired by PSGL-1. Mapping studies show that the extracellular N-terminal domain of PSGL-1 is necessary for its anti-HIV-1 activity, and that the PSGL-1 cytoplasmic tail contributes to inhibition. In addition, we demonstrate that the PSGL-1-related monomeric E-selectin-binding glycoprotein CD43 also effectively blocks HIV-1 infectivity. HIV-1 infection, or expression of either Vpu or Nef, down-regulates PSGL-1 from the cell surface; expression of Vpu appears to be primarily responsible for enabling the virus to partially escape PSGL-1-mediated restriction. Finally, we show that PSGL-1 inhibits the infectivity of other viruses, such as murine leukemia virus and influenza A virus. These findings demonstrate that PSGL-1 is a broad-spectrum antiviral host factor with a unique mechanism of action.


Assuntos
HIV-1/fisiologia , Glicoproteínas de Membrana/metabolismo , Ligação Viral , Buffy Coat , Linfócitos T CD4-Positivos , Regulação da Expressão Gênica , Células HeLa , Humanos
9.
Viruses ; 13(1)2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396594

RESUMO

P-selectin glycoprotein ligand-1 (PSGL-1) is a cell surface glycoprotein that binds to P-, E-, and L-selectins to mediate the tethering and rolling of immune cells on the surface of the endothelium for cell migration into inflamed tissues. PSGL-1 has been identified as an interferon-γ (INF-γ)-regulated factor that restricts HIV-1 infectivity, and has recently been found to possess broad-spectrum antiviral activities. Here we report that the expression of PSGL-1 in virus-producing cells impairs the incorporation of SARS-CoV and SARS-CoV-2 spike (S) glycoproteins into pseudovirions and blocks pseudovirus attachment and infection of target cells. These findings suggest that PSGL-1 may potentially inhibit coronavirus replication in PSGL-1+ cells.


Assuntos
COVID-19/virologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Vírion , Animais , Linhagem Celular , Células HEK293 , HIV-1/efeitos dos fármacos , Humanos , Interferon gama , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
10.
Nat Microbiol ; 4(5): 813-825, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833724

RESUMO

Human immunodeficiency virus (HIV) actively modulates the protein stability of host cells to optimize viral replication. To systematically examine this modulation in HIV infection, we used isobaric tag-based mass spectrometry to quantify changes in the abundance of over 14,000 proteins during HIV-1 infection of human primary CD4+ T cells. We identified P-selectin glycoprotein ligand 1 (PSGL-1) as an HIV-1 restriction factor downregulated by HIV-1 Vpu, which binds to PSGL-1 and induces its ubiquitination and degradation through the ubiquitin ligase SCFß-TrCP2. PSGL-1 is induced by interferon-γ in activated CD4+ T cells to inhibit HIV-1 reverse transcription and potently block viral infectivity by incorporating in progeny virions. This infectivity block is antagonized by Vpu via PSGL-1 degradation. We further show that PSGL-1 knockdown can significantly abolish the anti-HIV activity of interferon-γ in primary CD4+ T cells. Our study identifies an HIV restriction factor and a key mediator of interferon-γ's anti-HIV activity.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/genética , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Glicoproteínas de Membrana/genética , Proteólise , Proteômica , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
12.
Virology ; 518: 241-252, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29549786

RESUMO

In HIV infected macrophages, a large population of viral genomes persists as the unintegrated form (uDNA) that is transcriptionally active. However, how this transcriptional activity is controlled remains unclear. In this report, we investigated whether Tat, the viral transactivator of transcription, is involved in uDNA transcription. We demonstrate that de novo Tat activity is generated from uDNA, and this uDNA-derived Tat (uTat) transactivates the uDNA LTR. In addition, uTat is required for the transcriptional persistence of uDNA that is assembled into repressive episomal minichromatin. In the absence of uTat, uDNA minichromatin is gradually silenced, but remains highly inducible by HDAC inhibitors (HDACi). Therefore, functionally, uTat antagonizes uDNA minichromatin repression to maintain persistent viral transcription in macrophages. uTat-mediated viral persistence may establish a viral reservoir in macrophages where uDNA were found to persist.


Assuntos
DNA Viral/metabolismo , HIV/genética , Macrófagos/virologia , Transcrição Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Células Cultivadas , Humanos
13.
PLoS One ; 13(2): e0191983, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29408900

RESUMO

Rift Valley fever virus (RVFV) infects both ruminants and humans leading to a wide variance of pathologies dependent on host background and age. Utilizing a targeted reverse phase protein array (RPPA) to define changes in signaling cascades after in vitro infection of human cells with virulent and attenuated RVFV strains, we observed high phosphorylation of Smad transcription factors. This evolutionarily conserved family is phosphorylated by and transduces the activation of TGF-ß superfamily receptors. Moreover, we observed that phosphorylation of Smad proteins required active RVFV replication and loss of NSs impaired this activation, further corroborating the RPPA results. Gene promoter analysis of transcripts altered after RVFV infection identified 913 genes that contained a Smad-response element. Functional annotation of these potential Smad-regulated genes clustered in axonal guidance, hepatic fibrosis and cell signaling pathways involved in cellular adhesion/migration, calcium influx, and cytoskeletal reorganization. Furthermore, chromatin immunoprecipitation confirmed the presence of a Smad complex on the interleukin 1 receptor type 2 (IL1R2) promoter, which acts as a decoy receptor for IL-1 activation.


Assuntos
Fosfoproteínas/metabolismo , Proteômica , Febre do Vale de Rift/metabolismo , Proteínas Smad/metabolismo , Animais , Células Cultivadas , Humanos , Fosforilação , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/fisiologia , Proteínas Smad/genética , Replicação Viral/genética
14.
J Virol ; 91(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381571

RESUMO

A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs.IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Quinases Lim/antagonistas & inibidores , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Antivirais/isolamento & purificação , Células Cultivadas , Ebolavirus/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/isolamento & purificação , HIV-1/fisiologia , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Vírus da Febre do Vale do Rift/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...