Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 45(6): 569-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23943123

RESUMO

Over the past few years, several reports have described the presence of F0F1 ATP synthase subunits at the surface of hepatocytes, where the hydrolytic activity of F1 sector faces outside and triggers HDL endocytosis. An intriguing question is whether the ectopic enzyme has same subunit composition and molecular mass as that of the mitochondrial ATP synthase. Also due to the polar nature of hepatocytes, the enzyme may be localized to a particular cell boundary. Using different methods to prepare rat liver plasma membranes, which have been subjected to digitonin extraction, hr CN PAGE, immunoblotting, and mass spectrometry analysis, we demonstrate the presence of ecto-F0F1 complexes which have a similar molecular weight to the monomeric form of the mitochondrial complexes, containing both nuclear and mitochondrially-encoded subunits. This finding makes it unlikely that the enzyme assembles on the plasma membranes, but suggest it to be transported whole after being assembled in mitochondria by still unknown pathways. Moreover, the plasma membrane preparation enriched in basolateral proteins contains much higher amounts of complete and active F0F1 complexes, consistent with their specific function to modulate the HDL uptake on hepatocyte surface.


Assuntos
Hepatócitos/enzimologia , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Animais , Membrana Celular/enzimologia , Hepatócitos/citologia , Fígado/patologia , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley
2.
Biochim Biophys Acta ; 1807(12): 1600-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21889488

RESUMO

We have investigated the mechanism of rat-selective induction of the mitochondrial permeability transition (PT) by norbormide (NRB). We show that the inducing effect of NRB on the PT (i) is inhibited by the selective ligands of the 18kDa outer membrane (OMM) translocator protein (TSPO, formerly peripheral benzodiazepine receptor) protoporphyrin IX, N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide and 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one; and (ii) is lost in digitonin mitoplasts, which lack an intact OMM. In mitoplasts the PT can still be induced by the NRB cationic derivative OL14, which contrary to NRB is also effective in intact mitochondria from mouse and guinea pig. We conclude that selective NRB transport into rat mitochondria occurs via TSPO in the OMM, which allows its translocation to PT-regulating sites in the inner membrane. Thus, species-specificity of NRB toward the rat PT depends on subtle differences in the structure of TSPO or of TSPO-associated proteins affecting its substrate specificity.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Norbornanos/farmacologia , Receptores de GABA-A/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cobaias , Camundongos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Poro de Transição de Permeabilidade Mitocondrial , Dados de Sequência Molecular , Estrutura Molecular , Ratos , Ratos Wistar , Receptores de GABA-A/química , Receptores de GABA-A/genética , Rodenticidas/farmacologia , Alinhamento de Sequência , Especificidade por Substrato
3.
J Biol Chem ; 286(2): 1046-53, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21062740

RESUMO

We studied the properties of the permeability transition pore (PTP) in rat liver mitochondria and in mitoplasts retaining inner membrane ultrastructure and energy-linked functions. Like mitochondria, mitoplasts readily underwent a permeability transition following Ca(2+) uptake in a process that maintained sensitivity to cyclosporin A. On the other hand, major differences between mitochondria and mitoplasts emerged in PTP regulation by ligands of the outer membrane translocator protein of 18 kDa, TSPO, formerly known as the peripheral benzodiazepine receptor. Indeed, (i) in mitoplasts, the PTP could not be activated by photo-oxidation after treatment with dicarboxylic porphyrins endowed with protoporphyrin IX configuration, which bind TSPO in intact mitochondria; and (ii) mitoplasts became resistant to the PTP-inducing effects of N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide and of other selective ligands of TSPO. Thus, the permeability transition is an inner membrane event that is regulated by the outer membrane through specific interactions with TSPO.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Porfirinas/farmacocinética , Receptores de GABA-A/metabolismo , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Digitonina/farmacologia , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Oxirredução , Processos Fotoquímicos , Porfirinas/química , Ratos , Ratos Wistar
4.
J Biol Chem ; 284(49): 33982-8, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19801635

RESUMO

Blue native gel electrophoresis purification and immunoprecipitation of F(0)F(1)-ATP synthase from bovine heart mitochondria revealed that cyclophilin (CyP) D associates to the complex. Treatment of intact mitochondria with the membrane-permeable bifunctional reagent dimethyl 3,3-dithiobis-propionimidate (DTBP) cross-linked CyPD with the lateral stalk of ATP synthase, whereas no interactions with F(1) sector subunits, the ATP synthase natural inhibitor protein IF1, and the ATP/ADP carrier were observed. The ATP synthase-CyPD interactions have functional consequences on enzyme catalysis and are modulated by phosphate (increased CyPD binding and decreased enzyme activity) and cyclosporin (Cs) A (decreased CyPD binding and increased enzyme activity). Treatment of MgATP submitochondrial particles or intact mitochondria with CsA displaced CyPD from membranes and activated both hydrolysis and synthesis of ATP sustained by the enzyme. No effect of CsA was detected in CyPD-null mitochondria, which displayed a higher specific activity of the ATP synthase than wild-type mitochondria. Modulation by CyPD binding appears to be independent of IF1, whose association to ATP synthase was not affected by CsA treatment. These findings demonstrate that CyPD association to the lateral stalk of ATP synthase modulates the activity of the complex.


Assuntos
Ciclofilinas/fisiologia , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Hepáticas/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Bovinos , Cicloexanos/farmacologia , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Coração/fisiologia , Imunoprecipitação , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Modelos Biológicos , Ligação Proteica
5.
Electrophoresis ; 30(8): 1329-41, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19382133

RESUMO

We describe the characterization of polyclonal antibodies directed against the whole mitochondrial subproteome, as obtained by hyperimmunization of rabbits with an organelle fraction purified from human skeletal muscle and lysed by sonication. After 2-DE separations with either blue native electrophoresis or IPG as first dimension and blotting, the polyspecific antibodies detect 113 proteins in human muscle mitochondria, representative of all major biochemical pathways and oxidative phosphorylation (OXPHOS) complexes, and cross-react with 28 proteins in rat heart mitochondria. Using as sample cryosections of human muscle biopsies lysed in urea/thiourea/CHAPS, the mitochondrial subproteome can be detected against the background of contractile proteins. When comparing with controls samples from mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes patients, immunoblotting shows in the latter a drastic reduction for the subunits of OXPHOS complex I as well as an increase of several enzymes, including ATP synthase. This finding is the first evidence at the proteomic level of massive up-regulation in a number of metabolic pathways by which the affected tissues try to compensate for the deficit in the OXPHOS machinery.


Assuntos
Anticorpos/imunologia , Regulação da Expressão Gênica , Proteínas Mitocondriais , Proteômica/métodos , Acidose Láctica/metabolismo , Animais , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Humanos , Focalização Isoelétrica , Encefalomiopatias Mitocondriais/metabolismo , Proteínas Mitocondriais/imunologia , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/química , Miocárdio/química , Fosforilação Oxidativa , Coelhos
6.
Biochim Biophys Acta ; 1787(7): 897-904, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19344690

RESUMO

We have studied the mitochondrial permeability transition pore (PTP) under oxidizing conditions with mitochondria-bound hematoporphyrin, which generates reactive oxygen species (mainly singlet oxygen, (1)O(2)) upon UV/visible light-irradiation and promotes the photooxidative modification of vicinal targets. We have characterized the PTP-modulating properties of two major critical sites endowed with different degrees of photosensitivity: (i) the most photovulnerable site comprises critical histidines, whose photomodification by vicinal hematoporphyrin causes a drop in reactivity of matrix-exposed (internal), PTP-regulating cysteines thus stabilizing the pore in a closed conformation; (ii) the most photoresistant site coincides with the binding domains of (external) cysteines sensitive to membrane-impermeant reagents, which are easily unmasked when oxidation of internal cysteines is prevented. Photooxidation of external cysteines promoted by vicinal hematoporphyrin reactivates the PTP after the block caused by histidine photodegradation. Thus, hematoporphyrin-mediated photooxidative stress can either inhibit or activate the mitochondrial permeability transition depending on the site of hematoporphyrin localization and on the nature of the substrate; and selective photomodification of different hematoporphyrin-containing pore domains can be achieved by fine regulation of the sensitizer/light doses. These findings shed new light on PTP modulation by oxidative stress.


Assuntos
Hematoporfirinas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Estresse Oxidativo , Compostos de Sulfidrila/metabolismo , Animais , Cálcio/farmacologia , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Peróxido de Hidrogênio/farmacologia , Luz , Mitocôndrias Hepáticas/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , Oxidantes/farmacologia , Oxirredução , Permeabilidade , Fotoquímica , Ratos , Ratos Wistar , Oxigênio Singlete/metabolismo , Fatores de Tempo , Raios Ultravioleta
7.
Biochemistry ; 46(46): 13443-50, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17960912

RESUMO

The catalytic sites of beef heart mitochondrial F1-ATPase were studied by electron spin echo envelope modulation (ESEEM) spectroscopy, using Mn(II) as a paramagnetic probe, which replaces the naturally occurring Mg(II), maintaining the enzyme catalytic activity. F1-ATPase was purified from beef heart mitochondria. A protein still containing three endogenous nucleotides, named MF1(1,2), is obtained under milder conditions, whereas a harsher treatment gives a fully depleted F1, named MF1(0,0). Several samples were prepared, loading MF1(0,0) or MF1(1,2) with Mn(II) or MnIIADP in both substoichiometric and excess amounts. When MF1(1,2) is loaded with Mn(II) in a 1:0.8 ratio, the FT-ESEEM spectrum shows evidence of a nitrogen interacting with the metal, while this interaction is not present in MF1(0,0) + Mn(II) in a 1:0.8 ratio. However, when MF1(0,0) is loaded with 2.4 Mn(II), the FT-ESEEM spectrum shows a metal-nitrogen interaction resembling that present in MF1(1,2) + Mn(II) in a 1:0.8 ratio. These results strongly support the role of the metal alone in shaping and structuring the catalytic sites of the enzyme. When substoichiometric ADP is added to MF1(1,2) preloaded with 0.8 equiv of Mn(II), the ESEEM spectra show evidence of a phosphorus nucleus coupled to the metal, indicating that the nucleotide phosphate binding to Mn(II) occurs in a catalytic site. Generally, 14N coordination to the metal is clearly identified in the ESEEM spectra of all the samples containing more than one metal equivalent. One point of note is that the relevant nitrogen-containing ligand(s), responsible for the signals in the ESEEM spectra, has not yet been identified in the available X-ray structures.


Assuntos
Manganês/química , Mitocôndrias Cardíacas/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , Animais , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Manganês/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Conformação Proteica
8.
Biochim Biophys Acta ; 1767(7): 980-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17509521

RESUMO

It was recently demonstrated that the rat-selective toxicant norbormide also induces rat-selective opening of the permeability transition pore (PTP) in isolated mitochondria. Norbormide is a mixture of endo and exo stereoisomers; however, only the endo forms are lethal to rats. In the present study we tested both endo and exo isomers as well as neutral and cationic derivatives of norbormide to: (i) verify if the PTP-regulatory activity by norbormide is stereospecific; (ii) define the structural features of norbormide responsible for PTP-activation, (iii) elucidate the basis for the drug species-specificity. Our results show that: (i) norbormide isomers affect PTP in a rat-selective fashion; however, no relevant differences between lethal and non-lethal forms are observed suggesting that drug regulation of PTP-activity and lethality in rats are unrelated phenomena; (ii) a (phenylvinyl)pyridine moiety represents the key element conferring the PTP-activating effect; (iii) cationic derivatives of rat-active compounds accumulate in the matrix via the membrane potential and activate the PTP also in mouse and guinea pig mitochondria. These findings suggest that the norbormide-sensitive PTP-target is present in all species examined, and is presumably located on the matrix side. The species-selectivity may depend on the unique properties of a transport system allowing drug internalisation in rat mitochondria.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Norbornanos/toxicidade , Animais , Cobaias , Isomerismo , Camundongos , Norbornanos/química , Permeabilidade/efeitos dos fármacos , Ratos
9.
Biochim Biophys Acta ; 1708(2): 178-86, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15953474

RESUMO

In the present study, we show that norbormide stimulates the opening of the permeability transition pore (PTP) in mitochondria from various organs of the rat but not of guinea pig and mouse. Norbormide does not affect the basic parameters that modulate the PTP activity since the proton electrochemical gradient, respiration, phosphorylation and Ca(2+) influx processes are only partially affected. On the other hand, norbormide induces rat-specific changes in the fluidity of the lipid interior of mitochondrial membranes, as revealed by fluorescence anisotropy of various reporter molecules. Such changes increase the PTP open probability through the internal Me(2+) regulatory site. The lack of PTP opening by norbormide is matched by a negligible perturbation of internal lipid domains in guinea pig and mouse, suggesting that the drug does not gain access to the matrix in the mitochondria from these species. Consistent with this interpretation, we demonstrate a preferential interaction of norbormide with the mitochondrial surface leading to alterations of the Me(2+) binding affinity for the external PTP regulatory site. Our findings indicate that norbormide affects Me(2+) binding to the regulatory sites of the PTP, and suggest that the drug could be taken up by a mitochondrial transport system unique to the rat. The characterization of the norbormide target may lead to a better understanding of the mechanisms underlying the mitochondrial PTP as well as to the identification of species-specific drugs that affect mitochondrial function.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Norbornanos/farmacologia , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cobaias , Camundongos , Mitocôndrias Hepáticas/metabolismo , Ratos , Especificidade da Espécie
10.
FEBS J ; 272(5): 1124-35, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15720387

RESUMO

Oxidative stress and imbalance between free radical generation and detoxification may play a pivotal role in the pathogenesis of Leber's hereditary optic neuropathy (LHON). Mitochondria, carrying the homoplasmic 11778/ND4, 3460/ND1 and 14484/ND6 mtDNA point mutations associated with LHON, were used to generate osteosarcoma-derived cybrids. Enhanced mitochondrial production of reactive oxygen species has recently been demonstrated in these cybrids [Beretta S, Mattavelli L, Sala G, Tremolizzo L, Schapira AHV, Martinuzzi A, Carelli V & Ferrarese C (2004) Brain 127, 2183-2192]. The aim of this study was to characterize the antioxidant defences of these LHON-affected cells. The activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutases (SOD) and catalase, and the amounts of glutathione (GSH) and oxidized glutathione (GSSG) were measured in cybrids cultured both in glucose-rich medium and galactose-rich medium. The latter is known to cause oxidative stress and to trigger apoptotic death in these cells. In spite of reduced SOD activities in all LHON cybrids, and of low GPx and GR activities in cells with the most severe 3460/ND1 and 11778/ND4 mutations, GSH and GSSG content were not significantly modified in LHON cybrids cultured in glucose medium. In contrast, in galactose, GSSG concentrations increased significantly in all cells, indicating severe oxidative stress, whereas GR and MnSOD activities further decreased in all LHON cybrids. These data suggest that, in cells carrying LHON mutations, there is a decrease in antioxidant defences, which is especially evident in cells with mutations associated with the most severe clinical phenotype. This is magnified by stressful conditions such as exposure to galactose.


Assuntos
Antioxidantes/metabolismo , DNA Mitocondrial/genética , Células Híbridas/metabolismo , Mutação/genética , Atrofia Óptica Hereditária de Leber/genética , Oxigênio/metabolismo , Estudos de Casos e Controles , Catalase/metabolismo , Células Cultivadas , Análise Mutacional de DNA , Fibroblastos/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Humanos , Células Híbridas/patologia , Mitocôndrias/metabolismo , Pele/metabolismo , Superóxido Dismutase/metabolismo
11.
Biochemistry ; 43(41): 13214-24, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15476415

RESUMO

The high-affinity metal-binding site of isolated F(1)-ATPase from beef heart mitochondria was studied by high-field (HF) continuous wave electron paramagnetic resonance (CW-EPR) and pulsed EPR spectroscopy, using Mn(II) as a paramagnetic probe. The protein F(1) was fully depleted of endogenous Mg(II) and nucleotides [stripped F(1) or MF1(0,0)] and loaded with stoichiometric Mn(II) and stoichiometric or excess amounts of ADP or adenosine 5'-(beta,gamma-imido)-triphosphate (AMPPNP). Mn(II) and nucleotides were added to MF1(0,0) either subsequently or together as preformed complexes. Metal-ADP inhibition kinetics analysis was performed showing that in all samples Mn(II) enters one catalytic site on a beta subunit. From the HF-EPR spectra, the zero-field splitting (ZFS) parameters of the various samples were obtained, showing that different metal-protein coordination symmetry is induced depending on the metal nucleotide addition order and the protein/metal/nucleotide molar ratios. The electron spin-echo envelope modulation (ESEEM) technique was used to obtain information on the interaction between Mn(II) and the (31)P nuclei of the metal-coordinated nucleotide. In the case of samples containing ADP, the measured (31)P hyperfine couplings clearly indicated coordination changes related to the metal nucleotide addition order and the protein/metal/nucleotide ratios. On the contrary, the samples with AMPPNP showed very similar ESEEM patterns, despite the remarkable differences present among their HF-EPR spectra. This fact has been attributed to changes in the metal-site coordination symmetry because of ligands not involving phosphate groups. The kinetic data showed that the divalent metal always induces in the catalytic site the high-affinity conformation, while EPR experiments in frozen solutions supported the occurrence of different precatalytic states when the metal and ADP are added to the protein sequentially or together as a preformed complex. The different states evolve to the same conformation, the metal(II)-ADP inhibited form, upon induction of the trisite catalytic activity. All our spectroscopic and kinetic data point to the active role of the divalent cation in creating a competent catalytic site upon binding to MF1, in accordance with previous evidence obtained for Escherichia coli and chloroplast F(1).


Assuntos
Manganês/química , Manganês/metabolismo , Mitocôndrias Cardíacas/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Difosfato de Adenosina/química , Adenilil Imidodifosfato/química , Animais , Sítios de Ligação , Domínio Catalítico , Cátions Bivalentes/química , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Substâncias Macromoleculares , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores
12.
Eur J Biochem ; 271(18): 3646-56, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15355341

RESUMO

Three pairs of parental (rho+) and established mitochondrial DNA depleted (rho0) cells, derived from bone, lung and muscle were used to verify the influence of the nuclear background and the lack of efficient mitochondrial respiratory chain on antioxidant defences and homeostasis of intracellular reactive oxygen species (ROS). Mitochondrial DNA depletion significantly lowered glutathione reductase activity, glutathione (GSH) content, and consistently altered the GSH2 : oxidized glutathione ratio in all of the rho0 cell lines, albeit to differing extents, indicating the most oxidized redox state in bone rho0 cells. Activity, as well as gene expression and protein content, of superoxide dismutase showed a decrease in bone and muscle rho0 cell lines but not in lung rho0 cells. GSH peroxidase activity was four times higher in all three rho0 cell lines in comparison to the parental rho+, suggesting that this may be a necessary adaptation for survival without a functional respiratory chain. Taken together, these data suggest that the lack of respiratory chain prompts the cells to reduce their need for antioxidant defences in a tissue-specific manner, exposing them to a major risk of oxidative injury. In fact bone-derived rho0 cells displayed the highest steady-state level of intracellular ROS (measured directly by 2',7'-dichlorofluorescin, or indirectly by aconitase activity) compared to all the other rho+ and rho0 cells, both in the presence or absence of glucose. Analysis of mitochondrial and cytosolic/iron regulatory protein-1 aconitase indicated that most ROS of bone rho0 cells originate from sources other than mitochondria.


Assuntos
Antioxidantes/metabolismo , DNA Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aconitato Hidratase/análise , Aconitato Hidratase/metabolismo , Western Blotting , Carcinoma/metabolismo , Catalase/análise , Catalase/metabolismo , Linhagem Celular Tumoral , Glutationa/análise , Glutationa/metabolismo , Glutationa Peroxidase/análise , Glutationa Peroxidase/metabolismo , Glutationa Redutase/análise , Glutationa Redutase/metabolismo , Glutationa Transferase/análise , Glutationa Transferase/metabolismo , Homeostase , Humanos , Neoplasias Pulmonares/metabolismo , Osteossarcoma/metabolismo , Rabdomiossarcoma/metabolismo , Frações Subcelulares/enzimologia , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...