Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 14: 100, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25487652

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) is considered to be an important emerging pathogen associated with a number of different syndromes and diseases in pigs known as PCV2-associated diseases. It has been responsible for significant mortality among pigs and remains a serious economic problem to the swine industry worldwide leading to significant negative impacts on profitability of pork production. RESULTS: In this study we have demonstrated that PCV2 capsid (Cap) protein based virus-like particles (VLPs) were efficiently produced in yeast S. cerevisiae and induced production of monoclonal antibodies (MAbs) reactive with virus-infected cells. Moreover, PCV2 Cap VLPs served as a highly specific recombinant antigen for the development of an indirect IgG PCV2 Cap VLP-based ELISA for the detection of virus-specific IgG antibodies in swine sera. Four hundred-nine serum samples collected from pigs in Lithuania were tested for PCV2-specific IgG to determine the sensitivity and specificity of the newly developed ELISA in parallel using a commercial SERELISA test as a gold standard. From 409 tested serum samples, 297 samples were positive by both assays. Thirty-nine sera from 112 serum samples were determined as negative by SERELISA but were found to be positive both in the newly developed indirect IgG PCV2 Cap VLP-based ELISA and the PCR test. CONCLUSIONS: We have demonstrated that S. cerevisiae expression system is an alternative to insect/baculovirus expression system for production of homogenous in size and shape PCV2 Cap protein-based VLPs similar to native virions. Yeast expression system tolerated native virus genes encoding PCV2 Cap protein variants as well as the codon-optimized gene. Moreover, yeast-derived PCV2 Cap VLPs were capable to induce the generation of PCV2-specific MAbs that did not show any cross-reactivity with PCV1-infected cells. The high sensitivity and specificity of the indirect IgG PCV2 Cap VLP-based ELISA clearly suggested that this assay is potentially useful diagnostic tool for screening PCV2-suspected samples.


Assuntos
Anticorpos Monoclonais/análise , Proteínas do Capsídeo/imunologia , Infecções por Circoviridae/veterinária , Circovirus/fisiologia , Doenças dos Suínos/virologia , Vírion/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/análise , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Infecções por Circoviridae/virologia , Circovirus/genética , Circovirus/imunologia , Ensaio de Imunoadsorção Enzimática/instrumentação , Ensaio de Imunoadsorção Enzimática/métodos , Camundongos , Camundongos Endogâmicos BALB C , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Suínos , Doenças dos Suínos/diagnóstico , Vírion/genética , Vírion/imunologia
2.
Microbiol Res ; 169(5-6): 388-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24168924

RESUMO

Wall-less bacteria known as phytoplasmas are obligate transkingdom parasites and pathogens of plants and insect vectors. These unusual bacteria possess some of the smallest genomes known among pathogenic bacteria, and have never been successfully isolated in artificial culture. Disease symptoms induced by phytoplasmas in infected plants include abnormal growth and often severe yellowing of leaves, but mechanisms involved in phytoplasma parasitism and pathogenicity are little understood. A phage based genomic island (sequence variable mosaic, SVM) in the genome of Malaysian periwinkle yellows (MPY) phytoplasma harbors a gene encoding membrane-targeted proteins, including a putative phospholipase (PL), potentially important in pathogen-host interactions. Since some phytoplasmal disease symptoms could possibly be accounted for, at least in part, by damage and/or degradation of host cell membranes, we hypothesize that the MPY phytoplasma putative PL is an active enzyme. To test this hypothesis, functional analysis of the MPY putative pl gene-encoded protein was carried out in vitro after its expression in bacterial and yeast hosts. The results demonstrated that the heterologously expressed phytoplasmal putative PL is an active lipolytic enzyme and could possibly act as a pathogenicity factor in the plant, and/or insect, host.


Assuntos
Bacteriófagos/enzimologia , Bacteriófagos/genética , Fosfolipases/genética , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Phytoplasma/virologia , Clonagem Molecular , Expressão Gênica , Doenças das Plantas/microbiologia , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...