Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37115156

RESUMO

During autophagy, rapid membrane assembly expands small phagophores into large double-membrane autophagosomes. Theoretical modeling predicts that the majority of autophagosomal phospholipids are derived from highly efficient non-vesicular phospholipid transfer (PLT) across phagophore-ER contacts (PERCS). Currently, the phagophore-ER tether Atg2 is the only PLT protein known to drive phagophore expansion in vivo. Here, our quantitative live-cell imaging analysis reveals a poor correlation between the duration and size of forming autophagosomes and the number of Atg2 molecules at PERCS of starving yeast cells. Strikingly, we find that Atg2-mediated PLT is non-rate limiting for autophagosome biogenesis because membrane tether and the PLT protein Vps13 localizes to the rim and promotes the expansion of phagophores in parallel with Atg2. In the absence of Vps13, the number of Atg2 molecules at PERCS determines the duration and size of forming autophagosomes with an apparent in vivo transfer rate of ∼200 phospholipids per Atg2 molecule and second. We propose that conserved PLT proteins cooperate in channeling phospholipids across organelle contact sites for non-rate-limiting membrane assembly during autophagosome biogenesis.


Assuntos
Autofagossomos , Proteínas de Saccharomyces cerevisiae , Autofagossomos/metabolismo , Fosfolipídeos/metabolismo , Retículo Endoplasmático/metabolismo , Autofagia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Anal Bioanal Chem ; 412(17): 4089-4099, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333075

RESUMO

Steroids are essential structural components of cell membranes that organize lipid rafts and modulate membrane fluidity. They can also act as signalling molecules that work through nuclear and G protein-coupled receptors to impact health and disease. Notably, changes in steroid levels have been implicated in metabolic, cardiovascular and neurodegenerative diseases, but how alterations in the steroid pool affect ageing is less well understood. One of the major challenges in steroidomic analysis is the ability to simultaneously detect and distinguish various steroids due to low in vivo concentrations and naturally occurring stereoisomers. Here, we established such a method to study the mass spectrometry behaviour of nine sterols/steroids and related molecules (cholesterol precursors: squalene, lanosterol; sterol metabolites; 7 Dehydrocholesterol, 24, 25 and 27 Hydroxycholesterol; and steroids: progesterone, testosterone, and corticosterone) during ageing in the African turquoise killifish, a new model for studying vertebrate longevity. We find that levels of all tested steroids change significantly with age in multiple tissues, suggesting that specific steroids could be used as biomarkers of ageing. These findings pave the way for use of Nothobranchius furzeri as a novel model organism to unravel the role of sterols/steroids in ageing and age-related diseases. Graphical abstract.


Assuntos
Envelhecimento , Fundulidae/fisiologia , Esteroides/análise , Animais , Colesterol/análogos & derivados , Colesterol/análise , Colesterol/metabolismo , Espectrometria de Massas , Estereoisomerismo , Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA