Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 224: 116231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648904

RESUMO

In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.


Assuntos
Sistemas CRISPR-Cas , Citocromo P-450 CYP3A , Técnicas de Inativação de Genes , Hepatócitos , Bovinos , Animais , Hepatócitos/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Técnicas de Inativação de Genes/métodos , Linhagem Celular
2.
Cell Biol Toxicol ; 40(1): 18, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528259

RESUMO

The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.


Assuntos
Citocromo P-450 CYP1A1 , Xenobióticos , Bovinos , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistemas CRISPR-Cas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Linhagem Celular
3.
Toxins (Basel) ; 15(9)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37755981

RESUMO

Aflatoxin B1 (AFB1) induces lipid peroxidation and mortality in bovine foetal hepatocyte-derived cells (BFH12), with underlying transcriptional perturbations associated mainly with cancer, cellular damage, inflammation, bioactivation, and detoxification pathways. In this cell line, curcumin and resveratrol have proven to be effective in mitigating AFB1-induced toxicity. In this paper, we preliminarily assessed the potential anti-AFB1 activity of a natural polyphenol, quercetin (QUE), in BFH12 cells. To this end, we primarily measured QUE cytotoxicity using a WST-1 reagent. Then, we pre-treated the cells with QUE and exposed them to AFB1. The protective role of QUE was evaluated by measuring cytotoxicity, transcriptional changes (RNA-sequencing), lipid peroxidation (malondialdehyde production), and targeted post-transcriptional modifications (NQO1 and CYP3A enzymatic activity). The results demonstrated that QUE, like curcumin and resveratrol, reduced AFB1-induced cytotoxicity and lipid peroxidation and caused larger transcriptional variations than AFB1 alone. Most of the differentially expressed genes were involved in lipid homeostasis, inflammatory and immune processes, and carcinogenesis. As for enzymatic activities, QUE significantly reverted CYP3A variations induced by AFB1, but not those of NQO1. This study provides new knowledge about key molecular mechanisms involved in QUE-mediated protection against AFB1 toxicity and encourages in vivo studies to assess QUE's bioavailability and beneficial effects on aflatoxicosis.


Assuntos
Curcumina , Quercetina , Animais , Bovinos , Quercetina/farmacologia , Resveratrol/farmacologia , Aflatoxina B1/toxicidade , Citocromo P-450 CYP3A , Curcumina/farmacologia , Hepatócitos , Fígado
4.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298348

RESUMO

Among veterinary antibiotics, flumequine (FLU) is still widely used in aquaculture due to its efficacy and cost-effectiveness. Although it was synthesized more than 50 years ago, a complete toxicological framework of possible side effects on non-target species is still far from being achieved. The aim of this research was to investigate the FLU molecular mechanisms in Daphnia magna, a planktonic crustacean recognized as a model species for ecotoxicological studies. Two different FLU concentrations (2.0 mg L-1 and 0.2 mg L-1) were assayed in general accordance with OECD Guideline 211, with some proper adaptations. Exposure to FLU (2.0 mg L-1) caused alteration of phenotypic traits, with a significant reduction in survival rate, body growth, and reproduction. The lower concentration (0.2 mg L-1) did not affect phenotypic traits but modulated gene expression, an effect which was even more evident under the higher exposure level. Indeed, in daphnids exposed to 2.0 mg L-1 FLU, several genes related with growth, development, structural components, and antioxidant response were significantly modulated. To the best of our knowledge, this is the first work showing the impact of FLU on the transcriptome of D. magna.


Assuntos
Transcriptoma , Poluentes Químicos da Água , Animais , Daphnia/genética , Poluentes Químicos da Água/toxicidade , Reprodução
5.
Vet Rec ; 193(1): e2991, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224084

RESUMO

BACKGROUND: Canine subcutaneous mast cell tumours (ScMCTs) reportedly have a good prognosis. However, biomarkers that can be used to predict outcome are currently limited. METHODS: A multicentre prospective study was conducted to identify new prognostic markers. Dogs with a first occurrence of ScMCT were enrolled upon primary tumour removal and regional lymphadenectomy. In the absence of metastasis, dogs were monitored, while dogs with overtly metastatic lymph nodes (histological node 3, HN3) received adjuvant vinblastine. RESULTS: Forty-three dogs were enrolled: 15 (34.9%) had at least one HN3 lymph node and received vinblastine, and 28 (65.1%) were monitored. Three tumours harboured exon 8 and 9 c-kit mutations. Eight (18.6%) dogs experienced tumour progression, and five (11.6%) died of MCT-related causes. The 1- and 2-year survival rates were 90% and 77%, respectively. Variables significantly associated with an increased risk of progression included high cytograde, a mitotic count (MC) greater than 4/10 high-power fields (hpf) and Ki67-index greater than 23. An MC greater than 4/10 hpf was also associated with an increased risk of tumour-related death. LIMITATIONS: Regional rather than sentinel lymphadenectomy was performed in these dogs. Dogs were enrolled in oncology referral centres, constituting a different population compared to previous studies. CONCLUSIONS: ScMCTs have a good prognosis. However, the metastatic rate at admission was higher in this study than previously reported, and a subset of tumours were associated with a fatal outcome despite multimodal treatment. Proliferative activity and cytograding may predict more aggressive behaviour in ScMCTs.


Assuntos
Doenças do Cão , Mastócitos , Cães , Animais , Prognóstico , Estudos Prospectivos , Mastócitos/metabolismo , Mastócitos/patologia , Vimblastina , Linfonodos/patologia , Doenças do Cão/diagnóstico , Doenças do Cão/terapia , Doenças do Cão/genética
6.
Toxins (Basel) ; 14(7)2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35878173

RESUMO

Aflatoxin B1 (AFB1) is a major food safety concern, threatening the health of humans and animals. Bentonite (BEN) is an aluminosilicate clay used as a feed additive to reduce AFB1 presence in contaminated feedstuff. So far, few studies have characterized BEN toxicity and efficacy in vitro. In this study, cytotoxicity (WST-1 test), the effects on cell permeability (trans-epithelial electrical resistance and lucifer yellow dye incorporation), and transcriptional changes (RNA-seq) caused by BEN, AFB1 and their combination (AFB1 + BEN) were investigated in Caco-2 cells. Up to 0.1 mg/mL, BEN did not affect cell viability and permeability, but it reduced AFB1 cytotoxicity; however, at higher concentrations, BEN was cytotoxic. As to RNA-seq, 0.1 mg/mL BEN did not show effects on cell transcriptome, confirming that the interaction between BEN and AFB1 occurs in the medium. Data from AFB1 and AFB1 + BEN suggested AFB1 provoked most of the transcriptional changes, whereas BEN was preventive. The most interesting AFB1-targeted pathways for which BEN was effective were cell integrity, xenobiotic metabolism and transporters, basal metabolism, inflammation and immune response, p53 biological network, apoptosis and carcinogenesis. To our knowledge, this is the first study assessing the in vitro toxicity and whole-transcriptomic effects of BEN, alone or in the presence of AFB1.


Assuntos
Aflatoxina B1 , Bentonita , Aflatoxina B1/metabolismo , Ração Animal/análise , Animais , Bentonita/metabolismo , Bentonita/toxicidade , Células CACO-2 , Enterócitos/metabolismo , Humanos , Transcriptoma
7.
Toxins (Basel) ; 14(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35878242

RESUMO

Aflatoxin B1 (AFB1) is a food contaminant metabolized mostly in the liver and leading to hepatic damage. Livestock species are differently susceptible to AFB1, but the underlying mechanisms of toxicity have not yet been fully investigated, especially in ruminants. Thus, the aim of the present study was to better characterize the molecular mechanism by which AFB1 exerts hepatotoxicity in cattle. The bovine fetal hepatocyte cell line (BFH12) was exposed for 48 h to three different AFB1 concentrations (0.9 µM, 1.8 µM and 3.6 µM). Whole-transcriptomic changes were measured by RNA-seq analysis, showing significant differences in the expression of genes mainly involved in inflammatory response, oxidative stress, drug metabolism, apoptosis and cancer. As a confirmatory step, post-translational investigations on genes of interest were implemented. Cell death associated with necrosis rather than apoptosis events was noted. As far as the toxicity mechanism is concerned, a molecular pathway linking inflammatory response and oxidative stress was postulated. Toll-Like Receptor 2 (TLR2) activation, consequent to AFB1 exposure, triggers an intracellular signaling cascade involving a kinase (p38ß MAPK), which in turn allows the nuclear translocation of the activator protein-1 (AP-1) and NF-κB, finally leading to the release of pro-inflammatory cytokines. Furthermore, a p38ß MAPK negative role in cytoprotective genes regulation was postulated. Overall, our investigations improved the actual knowledge on the molecular effects of this worldwide relevant natural toxin in cattle.


Assuntos
Aflatoxina B1 , Receptor 2 Toll-Like , Aflatoxina B1/metabolismo , Animais , Bovinos , Hepatócitos , Fígado , Estresse Oxidativo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Transcriptoma
8.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408925

RESUMO

In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.


Assuntos
Fenobarbital , Xenobióticos , Animais , Bovinos , Sistema Enzimático do Citocromo P-450/metabolismo , Indução Enzimática , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Fenobarbital/farmacologia , Xenobióticos/metabolismo
9.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35409379

RESUMO

Gene expression is controlled by epigenetic deregulation, a hallmark of cancer. The DNA methylome of canine diffuse large B-cell lymphoma (cDLBCL), the most frequent malignancy of B-lymphocytes in dog, has recently been investigated, suggesting that aberrant hypermethylation of CpG loci is associated with gene silencing. Here, we used a multi-omics approach (DNA methylome, transcriptome and copy number variations) combined with functional in vitro assays, to identify putative tumour suppressor genes subjected to DNA methylation in cDLBCL. Using four cDLBCL primary cell cultures and CLBL-1 cells, we found that CiDEA, MAL and PCDH17, which were significantly suppressed in DLBCL samples, were hypermethylated and also responsive (at the DNA, mRNA and protein level) to pharmacological unmasking with hypomethylating drugs and histone deacetylase inhibitors. The regulatory mechanism underneath the methylation-dependent inhibition of those target genes expression was then investigated through luciferase and in vitro methylation assays. In the most responsive CpG-rich regions, an in silico analysis allowed the prediction of putative transcription factor binding sites influenced by DNA methylation. Interestingly, regulatory elements for AP2, MZF1, NF-kB, PAX5 and SP1 were commonly identified in all three genes. This study provides a foundation for characterisation and experimental validation of novel epigenetically-dysregulated pathways in cDLBCL.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Animais , Linhagem Celular Tumoral , Ilhas de CpG , Cães , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genes Supressores de Tumor
10.
Front Vet Sci ; 8: 755258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957277

RESUMO

Mast cell neoplasms are one of the most frequently diagnosed malignancies in dogs. The clinical picture, course, and prognosis vary substantially among patients, depending on the anatomic site, grade and stage of the disease. The most frequently involved organ is the skin, followed by hematopoietic organs (lymph nodes, spleen, liver, and bone marrow) and mucosal sites of the oral cavity and the gastrointestinal tract. In cutaneous mast cell tumors, several grading and staging systems have been introduced. However, no comprehensive classification and no widely accepted diagnostic criteria have been proposed to date. To address these open issues and points we organized a Working Conference on canine mast cell neoplasms in Vienna in 2019. The outcomes of this meeting are summarized in this article. The proposed classification includes cutaneous mast cell tumors and their sub-variants defined by grading- and staging results, mucosal mast cell tumors, extracutaneous/extramucosal mast cell tumors without skin involvement, and mast cell leukemia (MCL). For each of these entities, diagnostic criteria are proposed. Moreover, we have refined grading and staging criteria for mast cell neoplasms in dogs based on consensus discussion. The criteria and classification proposed in this article should greatly facilitate diagnostic evaluation and prognostication in dogs with mast cell neoplasms and should thereby support management of these patients in daily practice and the conduct of clinical trials.

11.
Antioxidants (Basel) ; 10(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34439473

RESUMO

Aflatoxin B1 (AFB1) is a natural feed and food contaminant classified as a group I carcinogen for humans. In the dairy industry, AFB1 and its derivative, AFM1, are of concern for the related economic losses and their possible presence in milk and dairy food products. Among its toxic effects, AFB1 can cause oxidative stress. Thus, dietary supplementation with natural antioxidants has been considered among the strategies to mitigate AFB1 presence and its toxicity. Here, the protective role of resveratrol (R) has been investigated in a foetal bovine hepatocyte cell line (BFH12) exposed to AFB1, by measuring cytotoxicity, transcriptional changes (RNA sequencing), and targeted post-transcriptional modifications (lipid peroxidation, NQO1 and CYP3A enzymatic activity). Resveratrol reversed the AFB1-dependent cytotoxicity. As for gene expression, when administered alone, R induced neglectable changes in BFH12 cells. Conversely, when comparing AFB1-exposed cells with those co-incubated with R+AFB1, greater transcriptional variations were observed (i.e., 840 DEGs). Functional analyses revealed that several significant genes were involved in lipid biosynthesis, response to external stimulus, drug metabolism, and inflammatory response. As for NQO1 and CYP3A activities and lipid peroxidation, R significantly reverted variations induced by AFB1, mostly corroborating and/or completing transcriptional data. Outcomes of the present study provide new knowledge about key molecular mechanisms involved in R antioxidant-mediated protection against AFB1 toxicity.

12.
Nucleic Acids Res ; 49(8): 4564-4573, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849064

RESUMO

G-quadruplexes (G4s) are tetrahelical DNA structures stabilized by four guanines paired via Hoogsteen hydrogen bonds into quartets. While their presence within eukaryotic DNA is known to play a key role in regulatory processes, their functional mechanisms are still under investigation. In the present work, we analysed the nanomechanical properties of three G4s present within the promoter of the KIT proto-oncogene from a single-molecule point of view through the use of magnetic tweezers (MTs). The study of DNA extension fluctuations under negative supercoiling allowed us to identify a characteristic fingerprint of G4 folding. We further analysed the energetic contribution of G4 to the double-strand denaturation process in the presence of negative supercoiling, and we observed a reduction in the energy required for strands separation.


Assuntos
DNA/química , Quadruplex G , Guanina/química , Proteínas Proto-Oncogênicas c-kit/química , Imagem Individual de Molécula/métodos , DNA Super-Helicoidal/química , Cinética , Desnaturação de Ácido Nucleico , Oncogenes , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Imagem Individual de Molécula/instrumentação
13.
Antioxidants (Basel) ; 9(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137966

RESUMO

Aflatoxin B1 (AFB1) toxicity in livestock and human beings is a major economic and health concern. Natural polyphenolic substances with antioxidant properties have proven to be effective in ameliorating AFB1-induced toxicity. Here we assessed the potential anti-AFB1 activity of curcumin (pure curcumin, C, and curcumin from Curcuma longa, CL) in a bovine fetal hepatocyte-derived cell line (BFH12). First, we measured viability of cells exposed to AFB1 in presence or absence of curcumin treatment. Then, we explored all the transcriptional changes occurring in AFB1-exposed cells cotreated with curcumin. Results demonstrated that curcumin is effective in reducing AFB1-induced toxicity, decreasing cells mortality by approximately 30%. C and CL induced similar transcriptional changes in BFH12 exposed to AFB1, yet C treatment resulted in a larger number of significant genes compared to CL. The mitigating effects of curcuminoids towards AFB1 toxicity were mainly related to molecular pathways associated with antioxidant and anti-inflammatory response, cancer, and drug metabolism. Investigating mRNA changes induced by curcumin in cattle BFH12 cells exposed to AFB1 will help us to better characterize possible tools to reduce its consequences in this susceptible and economically important food-producing species.

14.
J Vet Pharmacol Ther ; 43(6): 608-613, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32893906

RESUMO

In humans, the cytochrome P450 3A (CYP3A) subfamily is involved in midazolam (MDZ) biotransformation into 1'- and 4-hydroxy metabolites, and the former serves as a probe for CYP3A catalytic activity. In veterinary species is still crucial to identify enzyme- and species-specific CYP substrates; thus, the aim of this study was to characterize MDZ oxidation in cattle liver. A HPLC-UV method was used to measure 1'- and 4-hydroxy MDZ (1'- and 4-OHMDZ, respectively) formation in cattle liver microsomes and assess the role of CYP3A by an immunoinhibition study. Moreover, MDZ hydroxylation was evaluated in 300 cattle liver samples and results were correlated with testosterone hydroxylation. Formation of both metabolites conformed to a single-enzyme Michaelis-Menten kinetics. Values of Vmax and Km were 0.67 nmol/min/mg protein and 6.16 µM for 4-OHMDZ, and 0.06 nmol/min/mg protein and 10.08 µM for 1'-OHMDZ. An anti-rat CYP3A1 polyclonal antibody inhibited up to 50% and 94% 1'- and 4-OHMDZ formation, respectively. MDZ oxidation in liver microsomes was poorly correlated with testosterone hydroxylation. In conclusion, cattle metabolized MDZ to 1'-OHMDZ and 4-OHMDZ. The immunoinhibition results indicated a major contribution of CYP3As to 4-OHMDZ formation and the involvement of other CYPs in 1'-OHMDZ production, paving the way for further investigations.


Assuntos
Adjuvantes Anestésicos/metabolismo , Bovinos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Oxirredução
15.
PLoS One ; 15(8): e0237163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764792

RESUMO

In bovine mammary glands, the ABCG2 transporter actively secretes xenobiotics into dairy milk. This can have significant implications when cattle are exposed to pesticide residues in feed. Recent studies indicate that the fungicide prochloraz activates the aryl hydrocarbon receptor (AhR) pathway, increasing bovine ABCG2 (bABCG2) gene expression and efflux activity. This could enhance the accumulation of bABCG2 substrates in dairy milk, impacting pesticide risk assessment. We therefore investigated whether 13 commonly used pesticides in Europe are inducers of AhR and bABCG2 activity. MDCKII cells expressing mammary bABCG2 were incubated with pesticides for up to 72 h. To reflect an in vivo situation, applied pesticide concentrations corresponded to the maximum residue levels (MRLs) permitted in bovine fat or muscle. AhR activation was ascertained through CYP1A mRNA expression and enzyme activity, measured by qPCR and 7-ethoxyresorufin-Ο-deethylase (EROD) assay, respectively. Pesticide-mediated increase of bABCG2 efflux activity was assessed using the Hoechst 33342 accumulation assay. For all assays, the known AhR-activating pesticide prochloraz served as a positive control, while the non-activating tolclofos-methyl provided the negative control. At 10-fold MRL concentrations, chlorpyrifos-methyl, diflufenican, ioxynil, rimsulfuron, and tebuconazole significantly increased CYP1A1 mRNA levels, CYP1A activity, and bABCG2 efflux activity compared to the vehicle control. In contrast, dimethoate, dimethomorph, glyphosate, iprodione, methiocarb and thiacloprid had no impact on AhR-mediated CYP1A1 mRNA levels, CYP1A activity or bABCG2 efflux. In conclusion, the MDCKII-bABCG2 cell model proved an appropriate tool for identifying AhR- and bABCG2-inducing pesticides. This provides an in vitro approach that could reduce the number of animals required in pesticide approval studies.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Alternativas aos Testes com Animais/métodos , Fungicidas Industriais/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Testes de Toxicidade Crônica/métodos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/agonistas , Animais , Bovinos , Cães , Alemanha , Lactação/efeitos dos fármacos , Células Madin Darby de Rim Canino , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Recombinantes/metabolismo
16.
Toxins (Basel) ; 12(7)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610656

RESUMO

Aflatoxins, and particularly aflatoxin B1 (AFB1), are toxic mycotoxins to humans and farm animal species, resulting in acute and chronic toxicities. At present, AFB1 is still considered a global concern with negative impacts on health, the economy, and social life. In farm animals, exposure to AFB1-contaminated feed may cause several untoward effects, liver damage being one of the most devastating ones. In the present study, we assessed in vitro the transcriptional changes caused by AFB1 in a bovine fetal hepatocyte-derived cell line (BFH12). To boost the cellular response to AFB1, cells were pre-treated with the co-planar PCB 3,3',4,4',5-pentachlorobiphenyl (PCB126), a known aryl hydrocarbon receptor agonist. Three experimental groups were considered: cells exposed to the vehicle only, to PCB126, and to PCB126 and AFB1. A total of nine RNA-seq libraries (three replicates/group) were constructed and sequenced. The differential expression analysis showed that PCB126 induced only small transcriptional changes. On the contrary, AFB1 deeply affected the cell transcriptome, the majority of significant genes being associated with cancer, cellular damage and apoptosis, inflammation, bioactivation, and detoxification pathways. Investigating mRNA perturbations induced by AFB1 in cattle BFH12 cells will help us to better understand AFB1 toxicodynamics in this susceptible and economically important food-producing species.


Assuntos
Aflatoxina B1/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Fígado/metabolismo , Bifenilos Policlorados/toxicidade , Transdução de Sinais
17.
Animals (Basel) ; 10(4)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325906

RESUMO

The increasing demand for more animal products put pressure on improving livestock production efficiency and sustainability. In this context, advanced animal nutrition studies appear indispensable. Here, the effect of grape pomace (GP), the polyphenol-rich agricultural by-product, was evaluated on Holstein-Friesian cows' whole-blood transcriptome, milk production and composition. Two experimental groups were set up. The first one received a basal diet and served as a control, while the second one received a 7.5% GP-supplemented diet for a total of 60 days. Milk production and composition were not different between the group; however, the transcriptome analysis revealed a total of 40 genes significantly affected by GP supplementation. Among the most interesting down-regulated genes, we found the DnaJ heat-shock protein family member A1 (DNAJA1), the mitochondrial fission factor (MFF), and the impact RWD domain protein (IMPACT) genes. The gene set enrichment analysis evidenced the positive enrichment of 'interferon alpha (IFN-α) and IFN-γ response', 'IL6-JAK-STAT3 signaling' and 'complement' genes. Moreover, the functional analysis denoted positive enrichment of the 'response to protozoan' and 'negative regulation of viral genome replication' biological processes. Our data provide an overall view of the blood transcriptomic signature after a 60-day GP supplementation in dairy cows which mainly reflects a GP-induced immunomodulatory effect.

18.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396937

RESUMO

The regulation of conformational arrangements of gene promoters is a physiological mechanism that has been associated with the fine control of gene expression. Indeed, it can drive the time and the location for the selective recruitment of proteins of the transcriptional machinery. Here, we address this issue at the KIT proximal promoter where three G-quadruplex forming sites are present (kit1, kit2 and kit*). On this model, we focused on the interplay between G-quadruplex (G4) formation and SP1 recruitment. By site directed mutagenesis, we prepared a library of plasmids containing mutated sequences of the WT KIT promoter that systematically exploited different G4 formation attitudes and SP1 binding properties. Our transfection data showed that the three different G4 sites of the KIT promoter impact on SP1 binding and protein expression at different levels. Notably, kit2 and kit* structural features represent an on-off system for KIT expression through the recruitment of transcription factors. The use of two G4 binders further helps to address kit2-kit* as a reliable target for pharmacological intervention.


Assuntos
Neoplasias da Mama/patologia , Quadruplex G , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Transcrição Sp1/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7 , Fator de Transcrição Sp1/genética , Fatores de Transcrição
19.
Sci Rep ; 9(1): 19672, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873175

RESUMO

Cytochrome P450 3A is the most important CYP subfamily in humans, and CYP3A4/CYP3A5 genetic variants contribute to inter-individual variability in drug metabolism. However, no information is available for bovine CYP3A (bCYP3A). Here we described bCYP3A missense single nucleotide variants (SNVs) and evaluated their functional effects. CYP3A28, CYP3A38 and CYP3A48 missense SNVs were identified in 300 bulls of Piedmontese breed through targeted sequencing. Wild-type and mutant bCYP3A cDNAs were cloned and expressed in V79 cells. CYP3A-dependent oxidative metabolism of testosterone (TST) and nifedipine (NIF) was assessed by LC-MS/MS. Finally, SNVs functional impact on TST hydroxylation was measured ex vivo in liver microsomes from individually genotyped animals. Thirteen missense SNVs were identified and validated. Five variants showed differences in CYP3A catalytic activity: three CYP3A28 SNVs reduced TST 6ß-hydroxylation; one CYP3A38 variant increased TST 16ß-hydroxylation, while a CYP3A48 SNV showed enhanced NIF oxidation. Individuals homozygous for rs384467435 SNV showed a reduced TST 6ß-hydroxylation. Molecular modelling showed that most of SNVs were distal to CYP3A active site, suggesting indirect effects on the catalytic activity. Collectively, these findings demonstrate the importance of pharmacogenetics studies in veterinary species and suggest bCYP3A genotype variation might affect the fate of xenobiotics in food-producing species such as cattle.


Assuntos
Bovinos/genética , Bovinos/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Animais , Domínio Catalítico/genética , Linhagem Celular , Cricetulus , Citocromo P-450 CYP3A/química , Frequência do Gene , Masculino , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Família Multigênica , Nifedipino/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Testosterona/metabolismo
20.
Animals (Basel) ; 9(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731565

RESUMO

The effects of iodine supplementation on the whole-transcriptome of dairy cow using RNA sequencing has been investigated in this study. Iodine did not influence the milk composition, while an improvement was observed in the immune response as well as in the quality of dairy product. Indeed, the iodine intake specifically influenced the expression of 525 genes and the pathway analysis demonstrated that the most affected among them were related to immune response and oxidative stress. As a consequence, we indirectly showed a better response to bacterial infection because of the reduction of somatic cell counts; furthermore, an improvement of dairy product quality was observed since lipid oxidation reduced in fresh cheese. Such findings, together with the higher milk iodine content, clearly demonstrated that iodine supplementation in dairy cow could represent a beneficial practice to preserve animal health and to improve the nutraceutical properties of milk and its derived products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...