Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276786

RESUMO

The COVID-19 pandemic catalyzed a revolution in vaccine development, leading to the testing and approval of several global vaccine platforms that have shown tremendous promise in curbing the pandemic. Yet, despite these successes, waning immunity, and the emergence of variants of concern linked to rising breakthrough infections among vaccinees, have begun to highlight opportunities to improve vaccine platforms and deployment. Real-world vaccine efficacy has highlighted the reduced risk of breakthrough infection and disease among individuals infected and vaccinated, otherwise referred to as hybrid immunity. Hybrid immunity points to the potential for more vigorous or distinct immunity primed by the infection and may confer enhanced protection from COVID-19. Beyond augmented hybrid induced neutralizing antibody and T cell immune responses, here we sought to define whether hybrid immunity may shape the functional humoral immune response to SARS-CoV-2 following Pfizer/BNT162b2 and Moderna mRNA1273 mRNA-based, and ChadOx1/AZ1222 and Ad26.COV2.S vector-based SARS-CoV-2 vaccination. Each vaccine exhibited a unique functional humoral immune profile in the setting of naive or hybrid immunity. However, hybrid immunity showed a unique augmentation in S2-domain specific functional humoral immunity that was poorly induced in the setting of naive immune response. These data highlight the immunodominant effect of the S1-domain in the setting of natural immunity, which is highly variable during viral evolution, and the importance of natural infection in breaking this immunodominance in driving immunity to the S2 region of the SARS-CoV-2 S2 domain that is more conserved across variants of concern.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-463592

RESUMO

While children have been largely spared from COVID-19 disease, the emergence of viral variants of concern (VOC) with increased transmissibility, combined with fluctuating mask mandates and school re-openings have led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remains unclear. Given the recent announcement of incomplete immunity induced by the pediatric dose of the BNT162b2 vaccine in young children, here we aimed to deeply profile and compare the vaccine-induced humoral immune response in 6-11 year old children receiving the pediatric (50g) or adult (100g) dose of the mRNA-1273 vaccine compared to adults and naturally infected children or children that experienced multi inflammatory syndrome in children (MIS-C) for the first time. Children elicited an IgG dominant vaccine induced immune response, surpassing adults at a matched 100g dose, but more variable immunity at a 50g dose. Irrespective of titer, children generated antibodies with enhanced Fc-receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron receptor binding domain-binding, but robustly preserved omicron Spike-receptor binding, with robustly preserved Fc-receptor binding capabilities, in a dose dependent manner. These data indicate that while both 50g and 100g of mRNA vaccination in children elicits robust cross-VOC antibody responses, 100ug of mRNA in children results in highly preserved omicron-specific functional humoral immunity. One-Sentence SummarymRNA vaccination elicits robust humoral immune responses to SARS-CoV-2 in children 6-11 years of age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...