Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(57): 119988-119999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37934408

RESUMO

Although microbial degradation is a key sink of polycyclic aromatic hydrocarbons (PAH) in surface seawaters, there is a dearth of field-based evidences of regional divergences in biodegradation and the effects of PAHs on site-specific microbial communities. We compared the magnitude of PAH degradation and its impacts in short-term incubations of coastal Mediterranean and the Maritime Antarctica microbiomes with environmentally relevant concentrations of PAHs. Mediterranean bacteria readily degraded the less hydrophobic PAHs, with rates averaging 4.72 ± 0.5 ng L h-1. Metatranscriptomic responses showed significant enrichments of genes associated to horizontal gene transfer, stress response, and PAH degradation, mainly harbored by Alphaproteobacteria. Community composition changed and increased relative abundances of Bacteroidota and Flavobacteriales. In Antarctic waters, there was no degradation of PAH, and minimal metatranscriptome responses were observed. These results provide evidence for factors such as geographic region, community composition, and pre-exposure history to predict PAH biodegradation in seawater.


Assuntos
Alphaproteobacteria , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Regiões Antárticas , Água do Mar , Alphaproteobacteria/metabolismo , Biodegradação Ambiental
2.
Mar Pollut Bull ; 197: 115699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924734

RESUMO

Persistent organic pollutants (POPs) are widespread worldwide, even reaching polar regions. Among POPs, dichlorodiphenyltrichloroethane (DDT) and their metabolites have been reported scarcely in the Antarctic environment. Here we report the levels of p,p'-DDT, o,p'-DDT, p,p'-DDE, and o,p'-DDE in air and water samples collected during austral summer 2009. The levels found ranged from 0.25 to 4.26 pg m-3 in the atmospheric samples while in the water samples ranged from 0.07 to 0.25 pg L-1. These concentrations were within the range of the reported concentrations in the last 20 years in Antarctica. However, the source ratio showed that most of p,p'-DDT comes from fresh applications and Dicofol formulations. The back-trajectories estimated for the air masses revealed that most of the p,p'-DDT came from the continental Antarctic peninsula and surrounding waters. The diffusive exchange direction showed that Antarctic surface waters are the final sink of the studied compounds during the survey period.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , DDT/análise , Diclorodifenil Dicloroetileno/análise , Regiões Antárticas , Monitoramento Ambiental , Água do Mar , Água , Hidrocarbonetos Clorados/análise , Praguicidas/análise
3.
Environ Pollut ; 338: 122608, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742857

RESUMO

The sources, biogeochemical controls and sinks of perfluoroalkyl substances, such as perfluoroalkyl acids (PFAAs), in polar coastal regions are largely unknown. These were evaluated by measuring a large multi-compartment dataset of PFAAs concentrations at coastal Livingston and Deception Islands (maritime Antarctica) during three austral summers. PFAAs were abundant in atmospheric-derived samples (aerosols, rain, snow), consistent with the importance of atmospheric deposition as an input of PFAAs to Antarctica. Such PFAAs deposition was unequivocally demonstrated by the occurrence of PFAAs in small Antarctic lakes. Several lines of evidence supported the relevant amplification of PFAAs concentrations in surface waters driven by snow scavenging of sea-spray aerosol-bound PFAAs followed by snow-melting. For example, vertical profiles showed higher PFAAs concentrations at lower-salinity surface seawaters, and PFAAs concentrations in snow were significantly higher than in seawater. The higher levels of PFAAs at Deception Island than at Livingston Island are consistent with the semi-enclosed nature of the bay. Concentrations of PFOS decreased from 2014 to 2018, consistent with observations in other oceans. The sink of PFAAs due to the biological pump, transfer to the food web, and losses due to sea-spray aerosols alone are unlikely to have driven the decrease in PFOS concentrations. An exploratory assessment of the potential sinks of PFAAs suggests that microbial degradation of perfluoroalkyl sulfonates should be a research priority for the evaluation of PFAAs persistence in the coming decade.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Regiões Antárticas , Oceanos e Mares , Água do Mar , Aerossóis , Fluorocarbonos/análise , Monitoramento Ambiental , Ácidos Alcanossulfônicos/análise , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 450: 131036, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857820

RESUMO

The occurrence, long-range atmospheric transport and deposition of micro and nano plastics (MNPLs) remains un-quantified for the oceanic atmosphereopen ocean. Here we show the characterisation of MNPLs and the aerosol composition (PM10) in a north-south Atlantic transect from Vigo (Spain) to Punta Arenas (Chile). The analytical procedure to assess the composition of MNPLs consisted of a double suspect screening approach of the polymers and additives, the two constituents of plastics. Polymers were analysed by size exclusion chromatography coupled with high-resolution mass spectrometry using an atmospheric pressure photoionization source operated in positive and negative conditions (HPLC(SEC)-APPI(+/-)-HRMS). Plastic additives were screened with high-performance liquid chromatography coupled to high-resolution mass spectrometry using an electrospray ionisation source (HPLC-ESI(+/-)-HRMS). The most common polymers were polyethylene (PE), polypropylene (PP), polyisoprene (PI), and polystyrene (PS), with the highest polymer concentration being 51.7 ng·m-3 of PI. The air mass back trajectories showed the variable influence of oceanic and terrestrial air masses. These differences were reflected in the aerosol composition with different contributions of Saharan dust, sea spray aerosol, organic/elemental carbon, and MNPLs. Results showed that samples largely influenced by sea-spray and air masses originating from coastal South America and the north Atlantic subtropical gyre were more contaminated by MNPLs. Moreover, this information was complemented by the characterisation of the largest particles using scanning electron microscopy (SEM) and µ-Fourier Transform Infrared Spectroscopy (µ-FTIR). This work provides the first field evidence of the long-range transport of MNPLs in most of the Atlantic Ocean, as the result of dynamic coupling between the lower atmosphere and the surface ocean. Sea-spray formation arises as a key driver for the aerosolisation of MNPLs, and atmospheric transport followed by dry deposition may modulate the occurrence of MNPLs in large oceanic regions, issues that will require future research efforts.

5.
Environ Sci Technol ; 57(4): 1625-1636, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36655903

RESUMO

The temporal trend of polycyclic aromatic hydrocarbons (PAHs) in coastal waters with highly dynamic sources and sinks is largely unknown, especially for polar regions. Here, we show the concurrent measurements of 73 individual PAHs and environmental data, including the composition of the bacterial community, during three austral summers at coastal Livingston (2015 and 2018) and Deception (2017) islands (Antarctica). The Livingston 2015 campaign was characterized by a larger snow melting input of PAHs and nutrients. The assessment of PAH diagnostic ratios, such as parent to alkyl-PAHs or LMW to HMW PAHs, showed that there was a larger biodegradation during the Livingston 2015 campaign than in the Deception 2017 and Livingston 2018 campaigns. The biogeochemical cycling, including microbial degradation, was thus yearly dependent on snow-derived inputs of matter, including PAHs, consistent with the microbial community significantly different between the different campaigns. The bivariate correlations between bacterial taxa and PAH concentrations showed that a decrease in PAH concentrations was concurrent with the higher abundance of some bacterial taxa, specifically the order Pseudomonadales in the class Gammaproteobacteria, known facultative hydrocarbonoclastic bacteria previously reported in degradation studies of oil spills. The work shows the potential for elucidation of biogeochemical processes by intensive field-derived time series, even in the harsh and highly variable Antarctic environment.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Regiões Antárticas , Neve , Biodegradação Ambiental , Bactérias/metabolismo
6.
Front Microbiol ; 13: 907265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910648

RESUMO

As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans.

8.
Environ Pollut ; 308: 119592, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35688389

RESUMO

Semivolatile organic pollutants have potential for long range atmospheric transport and can thus reach pristine remote lakes by atmospheric deposition. Polycyclic aromatic hydrocarbons (PAHs) are among the most abundant and toxic semivolatile pollutants affecting lakes, however, the main factors controlling their fate are still poorly known. Here we show two contrasting lines of evidence for the importance of microbial degradation on the environmental fate of PAHs in a high altitude deep lake. The first evidence is given by an assessment of the metagenomes from surface and deep waters from Lake Redon (Pyrenees Mountains), which shows the occurrence of the initial ring hydroxylating dioxygenases as well as other PAH degrading genes from the complete metabolic route of PAH degradation. The second line of evidence is by the application of an environmental fate model for PAHs to Lake Redon under two contrasting scenarios considering the inclusion or not of degradation. When degradation is included in the model, PAH concentrations in the sediment are predicted within a factor of two of those measured in Lake Redon. Finally, the extent of the degradation sink is quantified and compared to other cycling PAH fluxes in the lake.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Altitude , Monitoramento Ambiental , Sedimentos Geológicos , Lagos/análise , Metagenoma , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
9.
Environ Sci Process Impacts ; 24(10): 1577-1615, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35244108

RESUMO

Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.


Assuntos
Produtos Biológicos , Poluentes Ambientais , Humanos , Mudança Climática , Poluentes Orgânicos Persistentes , Ecossistema , Poluentes Ambientais/análise , Microplásticos , Plásticos , Regiões Árticas
10.
Environ Res ; 204(Pt B): 112042, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34555404

RESUMO

In this study, the occurrence and diffusive air-water exchange of POPs in Panguipulli Lake (39°42'S-72°13'W), an oligotrophic lake located in northern Patagonia (Chile), were determined. Air and water samples were collected between March and August 2017 (autumn-winter) and analyzed for concentrations of OCPs (α-HCH, ß-HCH, γ-HCH and HCB) and PCBs (PCB-28,-52,-101,-118,-153,-158,-180) using gas chromatography coupled with an electron capture detector. The direction of air-water exchange direction was evaluated using a fugacity approach (ƒw ƒa-1), and net diffusive exchange fluxes (FAW, ng m-2 d-1) were also estimated. Total ∑4OCP levels in air ranged from 0.31 to 37 pg m-3, with a maximum for ß-HCH, while Σ7PCB levels ranged from 3.05 to 43 pg m-3. The most abundant congener was PCB-153, accounting for 60% of the total PCBs in air. Surface water ∑4OCPs measured in this study ranged from 1.01 to 3.9 pg L-1, with γ-HCH predominating, while surface water Σ7PCB levels ranged from 0.32 to 24 pg L-1, with PCB-101, PCB-118, and PCB-153 presenting the highest levels. Diffusive air-water exchanges of HCB, α-HCH, γ-HCH and PCBs in the form of volatilization from the lake to air predominated; in contrast, for ß-HCH net deposition dominated during the sampling period. Estimates suggested faster microbial degradation in the dissolved phase compared to atmospheric degradation for all analyzed POPs. Overall, these results could indicate that the oligotrophic lakes of northern Patagonia act as a secondary source of atmospheric POPs, mainly PCBs and some OCPs. This study is a first attempt to understand the occurrence of POPs in air and water, as well as their dynamics in oligotrophic lakes in the southern hemisphere.


Assuntos
Poluentes Atmosféricos , Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Lagos , Poluentes Orgânicos Persistentes , Praguicidas/análise , Bifenilos Policlorados/análise , Água , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 55(19): 12961-12972, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34553911

RESUMO

Scavenging of gas- and aerosol-phase organic pollutants by rain is an efficient wet deposition mechanism of organic pollutants. However, whereas snow has been identified as a key amplification mechanism of fugacities in cold environments, rain has received less attention in terms of amplification of organic pollutants. In this work, we provide new measurements of concentrations of perfluoroalkyl substances (PFAS), organophosphate esters (OPEs), and polycyclic aromatic hydrocarbons (PAHs) in rain from Antarctica, showing high scavenging ratios. Furthermore, a meta-analysis of previously published concentrations in air and rain was performed, with 46 works covering different climatic regions and a wide range of chemical classes, including PFAS, OPEs, PAHs, polychlorinated biphenyls and organochlorine compounds, polybromodiphenyl ethers, and dioxins. The rain-aerosol (KRP) and rain-gas (KRG) partition constants averaged 105.5 and 104.1, respectively, but showed large variability. The high field-derived values of KRG are consistent with adsorption onto the raindrops as a scavenging mechanism, in addition to gas-water absorption. The amplification of fugacities by rain deposition was up to 3 orders of magnitude for all chemical classes and was comparable to that due to snow. The amplification of concentrations and fugacities by rain underscores its relevance, explaining the occurrence of organic pollutants in environments across different climatic regions.


Assuntos
Poluentes Atmosféricos , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluentes Orgânicos Persistentes , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Chuva
12.
Environ Microbiol ; 23(8): 4532-4546, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34169620

RESUMO

Thousands of man-made synthetic chemicals are released to oceans and compose the anthropogenic dissolved organic carbon (ADOC). Little is known about the effects of this chronic pollution on marine microbiome activities. In this study, we measured the pollution level at three sites in the Northeast Subarctic Pacific Ocean (NESAP) and investigated how mixtures of three model families of ADOC at different environmentally relevant concentrations affected naturally occurring marine bacterioplankton communities' structure and metabolic functioning. The offshore northernmost site (North) had the lowest concentrations of hydrocarbons, as well as organophosphate ester plasticizers, contrasting with the two other continental shelf sites, the southern coastal site (South) being the most contaminated. At North, ADOC stimulated bacterial growth and promoted an increase in the contribution of some Gammaproteobacteria groups (e.g. Alteromonadales) to the 16 rRNA pool. These groups are described as fast responders after oil spills. In contrast, minor changes in South microbiome activities were observed. Gene expression profiles at Central showed the coexistence of ADOC degradation and stress-response strategies to cope with ADOC toxicities. These results show that marine microbial communities at three distinct domains in NESAP are influenced by background concentrations of ADOC, expanding previous assessments for polar and temperate waters.


Assuntos
Poluentes Ambientais , Microbiota , Bactérias/genética , Humanos , Oceano Pacífico , Água do Mar
13.
Environ Sci Technol ; 55(14): 9609-9621, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33606522

RESUMO

Coastal seawaters receive thousands of organic pollutants. However, we have little understanding of the response of microbiomes to this pool of anthropogenic dissolved organic carbon (ADOC). In this study, coastal microbial communities were challenged with ADOC at environmentally relevant concentrations. Experiments were performed at two Mediterranean sites with different impact by pollutants and nutrients: off the Barcelona harbor ("BCN"), and at the Blanes Bay ("BL"). ADOC additions stimulated prokaryotic leucine incorporation rates at both sites, indicating the use of ADOC as growth substrate. The percentage of "membrane-compromised" cells increased with increasing ADOC, indicating concurrent toxic effects of ADOC. Metagenomic analysis of the BCN community challenged with ADOC showed a significant growth of Methylophaga and other gammaproteobacterial taxa belonging to the rare biosphere. Gene expression profiles showed a taxon-dependent response, with significantly enrichments of transcripts from SAR11 and Glaciecola spp. in BCN and BL, respectively. Further, the relative abundance of transposon-related genes (in BCN) and transcripts (in BL) correlated with the number of differentially abundant genes (in BCN) and transcripts (in BLA), suggesting that microbial responses to pollution may be related to pre-exposure to pollutants, with transposons playing a role in adaptation to ADOC. Our results point to a taxon-specific response to low concentrations of ADOC that impact the functionality, structure and plasticity of the communities in coastal seawaters. This work contributes to address the influence of pollutants on microbiomes and their perturbation to ecosystem services and ocean health.


Assuntos
Poluentes Ambientais , Microbiota , Carbono , Metagenômica , Água do Mar
14.
Environ Res ; 196: 110344, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33068585

RESUMO

The air humidity in Antarctica is very low and this peculiar weather parameter make the use of flame retardants in research facilities highly needed for safety reasons, as fires are a major risk. Legacy and novel flame retardants (nFRs) including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), Dechlorane Plus (DP), and other nFRs were measured in indoor dust samples collected at research Stations in Antarctica: Gabriel de Castilla, Spain (GCS), Julio Escudero, Chile (JES), and onboard the RRS James Clark Ross, United Kingdom (RRS JCR). The GC-HRMS and LC-MS-MS analyses of dust samples revealed ∑7PBDEs of 41.5 ± 43.8 ng/g in rooms at GCS, 18.7 ± 11.6 ng/g at JES, and 27.2 ± 37.9 ng/g onboard the RRS JCR. PBDE pattern was different between the sites and most abundant congeners were BDE-183 (40%) at GCS, BDE-99 (50%) at JES, and BDE-153 (37%) onboard the RRS JCR. The ∑(4)HBCDs were 257 ± 407 ng/g, 14.9 ± 14.5 ng/g, and 761 ± 1043 ng/g in indoor dust collected in rooms at GCS, JES, and RRS JCR, respectively. The ∑9nFRs were 224 ± 178 ng/g at GCS, 14.1 ± 13.8 ng/g at JES, and 194 ± 392 ng/g on the RRS JCR. Syn- and anti-DP were detected in most of the samples and both isomers showed the highest concentrations at GCS: 163 ± 93.6 and 48.5 ± 61.1 ng/g, respectively. The laboratory and living room showed the highest concentration of HBCDs, DPs, BTBPE. The wide variations in FR levels in dust from the three research facilities and between differently used rooms reflect the different origin of furnishing, building materials and equipment. The potential health risk associated to a daily exposure via dust ingestion was assessed for selected FRs: BDEs 47, 99, and 153, α-, ß-, and γ-HBCD, BTBPE, syn- and anti-DP. Although the estimated exposures are below the available reference doses, caution is needed given the expected increasing use of novel chemicals without a comprehensive toxicological profile.


Assuntos
Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Poluição do Ar em Ambientes Fechados/análise , Regiões Antárticas , Chile , Poeira/análise , Exposição Ambiental/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Humanos , Espanha , Reino Unido
15.
Front Microbiol ; 11: 571983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013806

RESUMO

The composition of bacteria inhabiting the sea-surface microlayer (SML) is poorly characterized globally and yet undescribed for the Southern Ocean, despite their relevance for the biogeochemistry of the surface ocean. We report the abundances and diversity of bacteria inhabiting the SML and the subsurface waters (SSL) determined from a unique sample set from a polar coastal ecosystem (Livingston Island, Antarctica). From early to late austral summer (January-March 2018), we consistently found a higher abundance of bacteria in the SML than in the SSL. The SML was enriched in some Gammaproteobacteria genus such as Pseudoalteromonas, Pseudomonas, and Colwellia, known to degrade a wide range of semivolatile, hydrophobic, and surfactant-like organic pollutants. Hydrocarbons and other synthetic chemicals including surfactants, such as perfluoroalkyl substances (PFAS), reach remote marine environments by atmospheric transport and deposition and by oceanic currents, and are known to accumulate in the SML. Relative abundances of specific SML-enriched bacterial groups were significantly correlated to concentrations of PFASs, taken as a proxy of hydrophobic anthropogenic pollutants present in the SML and its stability. Our observations provide evidence for an important pollutant-bacteria interaction in the marine SML. Given that pollutant emissions have increased during the Anthropocene, our results point to the need to assess chemical pollution as a factor modulating marine microbiomes in the contemporaneous and future oceans.

17.
Environ Pollut ; 267: 115512, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892018

RESUMO

Sea-spray (or sea-salt) aerosol (SSA) formation and their subsequent atmospheric transport and deposition have been suggested to play a prominent role in the occurrence of ionizable perfluoroalkyl substances (PFAS) in the maritime Antarctica and other remote regions. However, field studies on SSA's role as vector of transport of PFAS are lacking. Following a multiphase approach, seawater (SW), the sea-surface microlayer (SML) and SSA were sampled simultaneously at South Bay (Livingston Island, Antarctica). Average PFAS concentrations were 313 pg L-1, 447 pg L-1, and 0.67 pg m-3 in SW, the SML and SSA, respectively. The enrichment factors of PFAS in the SML and SSA ranged between 1.2 and 5, and between 522 and 4690, respectively. This amplification of concentrations in the SML is consistent with the surfactant properties of PFAS, while the large enrichment of PFAS in atmospheric SSA may be facilitated by the large surface area of SSA and the sorption of PFAS to aerosol organic matter. This is the first field work assessing the simultaneous occurrence of PFAS in SW, the SML and SSA. The large measured amplification of concentrations in marine aerosols supports the role of SSA as a relevant vector for long-range atmospheric transport of PFAS.


Assuntos
Fluorocarbonos , Aerossóis , Regiões Antárticas , Fluorocarbonos/análise , Ilhas , Oceanos e Mares , Água do Mar
18.
ISME J ; 14(10): 2646-2648, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32647311

RESUMO

Thousands of synthetic chemicals and hydrocarbons are released to the marine environment composing the anthropogenic dissolved organic carbon (ADOC). Most ADOC is disproportionally hydrophobic, and consequently, its concentrations in the cell membranes are between a thousand and hundred million fold higher than those in the dissolved phase. Marine microorganisms respond to ADOC by multiple strategies ranging from ADOC degradation to detoxifying metabolisms. We argue that the increasing concentrations of ADOC in the oceans deriving from rivers, atmospheric deposition, and plastic leachates can have an effect on the health of the oceans and influence the major biogeochemical cycles, thus influencing the Earth system during the Anthropocene.


Assuntos
Carbono , Microbiota , Oceanos e Mares , Rios
19.
Sci Total Environ ; 738: 139838, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531599

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are semivolatile organic compounds of environmental concern. This study aims to investigate the influence of local sources of anthropogenic PAHs and their air-water exchange fluxes in an oligotrophic North-Patagonian lake in Chile. The monitoring was carried out in Panguipulli Lake during a six-month period during the autumn and winter seasons (March to August 2017) using a high-volume air sampler and a pump system for water samples. We detected and quantified fifteen PAHs in the gas phase (mean ∑15PAHs = 11.6 ng m-3) and dissolved water phase (mean ∑15PAHs = 961.8 pg L-1). Methylphenanthrenes and pyrene dominated the concentrations of PAHs in the studied phases. To determine sources of PAHs we used the PAH ratios of Light Molecular Weight/Heavy Molecular Weight (∑LMW/∑HMW) and Phenanthrene/Anthracene (Phe/Ant). The PAH ratio results revealed a pyrogenic source. We estimated the air-water diffusive exchange fluxes and fugacity ratios for the studied compounds. In general, air-water diffusive exchanges of PAHs showed a net volatilization for the less hydrophobic (log KOW < 4) and lighter PAHs (MW ≤ 170 g mol-1), and a net deposition trend for the more hydrophobic (log KOW 4-7) and higher molecular weight PAHs (MW ≥ 178 g mol-1). We found a significant correlation between log water/air fugacity ratios and log KOW of PAHs. Therefore, it is suggested that this oligotrophic lake acts as a sink by accumulating hydrophobic and mid-high molecular weight PAHs derived mainly from pyrogenic sources. This study is the first attempt to understand the sources and behavior of PAHs in oligotrophic lakes in the Southern Chile where information is scarce regarding the occurrence of PAHs.

20.
Water Res ; 171: 115434, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31927092

RESUMO

Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) acids are ubiquitous in the oceans, including remote regions, and are toxic to fish and mammals. The impact to the lowest trophic levels of the food web, however, remains unknown. We challenged natural bacterial communities inhabiting Antarctic coastal waters (Deception Island) with PFOS and PFOA concentrations ranging from 2 ng/L to 600 ng/L that selected for tolerant taxa. After 48 h, concentrations of PFOS decreased by more than 50% and sulfur metabolism-related transcripts were significantly enriched in the treatments suggesting desulfurization of PFOS. Conversely, no significant differences were found between initial and final PFOA concentrations. Gammaproteobacteria and Roseobacter, two abundant groups of marine bacteria, increased their relative activity after 24 h of incubation, whereas Flavobacteriia became the main contributor in the treatments after 6 days. Community activities (extracellular enzyme activity and absolute number of transcripts) were higher in the treatments than in the controls, while bacterial abundances were lower in the treatments, suggesting a selection of PFOS and PFOA tolerant community in the exposed treatments. Our results show a direct effect of PFOS and PFOA exposure on the composition and functionality of natural Antarctic marine microbial communities. While no evidence of defluorination of PFOS or PFOA was detected, probable desulfurization of PFOS depicts a direct link with the sulfur biogeochemistry of the ocean.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Regiões Antárticas , Caprilatos , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...