Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1000534

RESUMO

Objective@#The heart contains a pool of c-kit+ progenitor cells which is believed to be able to regenerate. The differentiation of these progenitor cells is reliant on different physiological cues. Unraveling the underlying signals to direct differentiation of progenitor cells will be beneficial in controlling progenitor cell fate. In this regard, the role of the mitochondria in mediating cardiac progenitor cell fate remains unclear. Specifically, the association between changes in mitochondrial morphology with the differentiation status of c-kit+ CPCs remains elusive. In this study, we investigated the relationship between mitochondrial morphology and the differentiation status of c-kit+ progenitor cells. @*Methods@#and Results: c-kit+ CPCs were isolated from 2-month-old male wild-type FVB mice. To activate differentiation, CPCs were incubated in α-minimal essential medium containing 10 nM dexamethasone for up to 7 days. To inhibit Drp1-mediated mitochondrial fragmentation, either 10 μM or 50 μM mdivi-1 was administered once at Day 0 and again at Day 2 of differentiation. To inhibit calcineurin, either 1 μM or 5 μM ciclosporin-A (CsA) was administered once at Day 0 and again at Day 2 of differentiation. Dexamethasone-induced differentiation of c-kit+ progenitor cells is aligned with fragmentation of the mitochondria via a calcineurin-Drp1 pathway. Pharmacologically inhibiting mitochondrial fragmentation retains the undifferentiated state of the c-kit+ progenitor cells. @*Conclusions@#The findings from this study provide an alternative view of the role of mitochondrial fusion-fission in the differentiation of cardiac progenitor cells and the potential of pharmacologically manipulating the mitochondria to direct progenitor cell fate.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20081257

RESUMO

BackgroundCOVID-19 patients with comorbidities such as hypertension or heart failure (HF) are associated with poor clinical outcomes. Angiotensin-converting enzyme 2 (ACE2), the critical enzyme for SARS-CoV-2 infection, is broadly expressed in many organs including heart. However, the cellular distribution of ACE2 in the human heart, particularly the failing heart is unknown. MethodsWe analyzed single-cell RNA sequencing (scRNA-seq) data in both normal and failing hearts, and characterized the ACE2 gene expression profile in various cell subsets, especially in cardiomyocyte subsets, as well as its interaction with gene networks relating to various defense and immune responses at the single cell level. ResultsThe results demonstrated that ACE2 is present in cardiomyocytes (CMs), endothelial cells, fibroblasts and smooth muscle cells in the heart, while the number of ACE2-postive (ACE2+) CMs and ACE2 gene expression in these CMs are significantly increased in the failing hearts. Interestingly, both brain natriuretic peptides (BNP) and atrial natriuretic peptide (ANP) are significantly up-regulated in the ACE2+ CMs. Further analysis shows that ANP, BNP and ACE2 may form a negative feedback loop with a group of genes associated with the development of heart failure. To our surprise, we found that genes related to virus entry, virus replication and suppression of interferon-gamma (IFN-{gamma}) signaling are all up-regulated in CMs in failing hearts, and the increases were significantly higher in ACE2+ CMs as compared with ACE2 negative (ACE2-) CMs, suggesting that these ACE2+ CMs may be more vulnerable to virus infection. Since ACE2 expression is correlated with BNP expression, we further performed retrospective analysis of the plasma BNP levels and clinic outcome of 91 COVID-19 patients from a single-center. Patients with higher plasma BNP were associated with significantly higher mortality rate and expression levels of inflammatory and infective markers such as procalcitonin and C-reactive protein. ConclusionIn the failing heart, the upregulation of ACE2 and virus infection associated genes, as well as the increased expression of ANP and BNP could facilitate SARS-CoV-2 virus entry and replication in these vulnerable cardiomyocyte subsets. These findings may advance our understanding of the underlying molecular mechanisms of myocarditis associated with COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...