Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712112

RESUMO

Background: Variability in treatment response may be attributable to organ-level heterogeneity in tumor lesions. Radiomic analysis of medical images can elucidate non-invasive biomarkers of clinical outcome. Organ-specific radiomic comparison across immunotherapies and targeted therapies has not been previously reported. Methods: We queried UPMC Hillman Cancer Center registry for patients with metastatic melanoma (MEL) treated with immune checkpoint inhibitors (ICI) (anti-PD1/CTLA4 [ipilimumab+nivolumab; I+N] or anti-PD1 monotherapy) or BRAF targeted therapy. Best overall response was measured using RECIST v1.1. Lesions were segmented into discrete volume-of-interest with 400 radiomics features extracted. Overall and organ-specific machine-learning models were constructed to predict disease control (DC) versus progressive disease (PD) using XGBoost. Results: 291 MEL patients were identified, including 242 ICI (91 I+N, 151 PD1) and 49 BRAF. 667 metastases were analyzed, including 541 ICI (236 I+N, 305 PD1) and 126 BRAF. Across cohorts, baseline demographics included 39-47% female, 24-29% M1C, 24-46% M1D, and 61-80% with elevated LDH. Among patients experiencing DC, the organs with the greatest reduction were liver (-88%±12%, I+N; mean±S.E.M.) and lung (-72%±8%, I+N). For patients with multiple same-organ target lesions, the highest inter-lesion heterogeneity was observed in brain among patients who received ICI while no intra-organ heterogeneity was observed in BRAF. 267 patients were kept for radiomic modeling, including 221 ICI (86 I+N, 135 PD1) and 46 BRAF. Models consisting of optimized radiomic signatures classified DC/PD across I+N (AUC=0.85) and PD1 (0.71) and within individual organ sites (AUC=0.72∼0.94). Integration of clinical variables improved the models' performance. Comparison of models between treatments and across organ sites suggested mostly non-overlapping DC or PD features. Skewness, kurtosis, and informational measure of correlation (IMC) were among the radiomic features shared between overall response models. Kurtosis and IMC were also utilized by multiple organ-site models. Conclusions: Differential organ-specific response was observed across BRAF and ICI with within organ heterogeneity observed for ICI but not for BRAF. Radiomic features of organ-specific response demonstrated little overlap. Integrating clinical factors with radiomics improves the prediction of disease course outcome and prediction of tumor heterogeneity.

2.
Res Sq ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645831

RESUMO

Patients with tumors that do not respond to immune-checkpoint inhibition often harbor a non-T cell-inflamed tumor microenvironment, characterized by the absence of IFN-γ-associated CD8+ T cell and dendritic cell activation. Understanding the molecular mechanisms underlying immune exclusion in non-responding patients may enable the development of novel combination therapies. p38 MAPK is a known regulator of dendritic and myeloid cells however a tumor-intrinsic immunomodulatory role has not been previously described. Here we identify tumor cell p38 signaling as a therapeutic target to potentiate anti-tumor immunity and overcome resistance to immune-checkpoint inhibitors (ICI). Molecular analysis of tumor tissues from patients with human papillomavirus-negative head and neck squamous carcinoma reveals a p38-centered network enriched in non-T cell-inflamed tumors. Pan-cancer single-cell RNA analysis suggests that p38 activation may be an immune-exclusion mechanism across multiple tumor types. P38 knockdown in cancer cell lines increases T cell migration, and p38 inhibition plus ICI in preclinical models shows greater efficacy compared to monotherapies. In a clinical trial of patients refractory to PD1/L1 therapy, pexmetinib, a p38 inhibitor, plus nivolumab demonstrated deep and durable clinical responses. Targeting of p38 with anti-PD1 has the potential to induce the T cell-inflamed phenotype and overcome immunotherapy resistance.

3.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183819

RESUMO

BACKGROUNDWe previously demonstrated the safety of stereotactic body radiotherapy followed by pembrolizumab (SBRT+P) in patients with advanced solid tumors. This phase I clinical trial was expanded to study the safety of partial tumor irradiation (partial-Rx). We assessed irradiated local failure (LF) and clinical outcomes with correlations to biomarkers including CD8+ T cell radiomics score (RS) and circulating cytokines.METHODSPatients received SBRT to 2-4 metastases and pembrolizumab for up to 7 days after SBRT. Tumors measuring up to 65 cc received the full radiation dose (complete-Rx), whereas tumors measuring more than 65 cc received partial-Rx. Landmark analysis was used to assess the relationship between tumor response and overall survival (OS). Multivariable analysis was performed for RS and circulating cytokines.RESULTSIn the combined (expansion plus original) cohort, 97 patients (219 metastases) were analyzed and received SBRT+P. Forty-six (47%) patients received at least 1 partial-Rx treatment. There were 7 (7.2%)dose-limiting toxicities (DLTs). 1-year LF was 7.6% overall, and 13.3% and 5.4% for partial-Rx and complete-Rx tumors, respectively (HR 2.32, 95% CI 0.90-5.97, P = 0.08). The overall, unirradiated, and irradiated objective response rates were 22%, 12%, and 34%, respectively. Irradiated tumor response to SBRT+P was associated with prolonged OS; 1-year OS was 71% (responders), 42% (mixed-responders), and 0% (nonresponders) (P < 0.01). High-RS was significantly associated with improved LF, progression-free survival (PFS), and OS. Elevated circulating IL-8 was independently associated with inferior PFS and OS.CONCLUSIONSBRT+P is safe in patients with large, advanced solid tumors. Additional studies are warranted to assess noninferiority of complete versus partial irradiation of tumors in the setting of immunotherapy.TRIAL REGISTRATIONClinicaltrials.gov NCT02608385FUNDINGMerck Investigator Studies Program; Hillman Fellows for Innovative Cancer Research Program; NIH grants UM1CA186690-06, P50CA254865-01A1, P30CA047904-32, and R01DE031729-01A1.


Assuntos
Neoplasias , Radiocirurgia , Humanos , Anticorpos Monoclonais Humanizados/efeitos adversos , Citocinas , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radiocirurgia/efeitos adversos
4.
Immunohorizons ; 5(1): 48-58, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483333

RESUMO

TRAIL (Tnfsf10/TRAIL/CD253/Apo2L) is an important immune molecule that mediates apoptosis. TRAIL can play key roles in regulating cell death in the tumor and autoimmune microenvironments. However, dissecting TRAIL function remains difficult because of the lack of optimal models. We have now generated a conditional knockout (Tnfsf10 L/L) for cell type-specific analysis of TRAIL function on C57BL/6, BALB/c, and NOD backgrounds. Previous studies have suggested a role for TRAIL in regulatory T cell (Treg)-mediated suppression. We generated mice with a Treg-restricted Tnfsf10 deletion and surprisingly found no impact on tumor growth in C57BL/6 and BALB/c tumor models. Furthermore, we found no difference in the suppressive capacity of Tnfsf10-deficient Tregs and no change in function or proliferation of T cells in tumors. We also assessed the role of TRAIL on Tregs in two autoimmune mouse models: the NOD mouse model of autoimmune diabetes and the myelin oligodendrocyte glycoprotein (MOG) C57BL/6 model of experimental autoimmune encephalomyelitis. We found that deletion of Tnfsf10 on Tregs had no effect on disease progression in either model. We conclude that Tregs do not appear to be dependent on TRAIL exclusively as a mechanism of suppression in both the tumor and autoimmune microenvironments, although it remains possible that TRAIL may contribute in combination with other mechanisms and/or in different disease settings. Our Tnfsf10 conditional knockout mouse should prove to be a useful tool for the dissection of TRAIL function on different cell populations in multiple mouse models of human disease.


Assuntos
Tolerância Periférica , Linfócitos T Reguladores/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Animais , Apoptose , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Feminino , Citometria de Fluxo , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/imunologia , Neoplasias/imunologia , Linfócitos T Reguladores/citologia
5.
Adv Exp Med Biol ; 1273: 105-134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119878

RESUMO

Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.


Assuntos
Neoplasias/imunologia , Linfócitos T Reguladores/citologia , Microambiente Tumoral/imunologia , Fatores de Transcrição Forkhead , Humanos , Subunidade alfa de Receptor de Interleucina-2 , Neoplasias/terapia , Linfócitos T Reguladores/imunologia
6.
Cell ; 169(6): 1130-1141.e11, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552348

RESUMO

Regulatory T cells (Tregs) are a barrier to anti-tumor immunity. Neuropilin-1 (Nrp1) is required to maintain intratumoral Treg stability and function but is dispensable for peripheral immune tolerance. Treg-restricted Nrp1 deletion results in profound tumor resistance due to Treg functional fragility. Thus, identifying the basis for Nrp1 dependency and the key drivers of Treg fragility could help to improve immunotherapy for human cancer. We show that a high percentage of intratumoral NRP1+ Tregs correlates with poor prognosis in melanoma and head and neck squamous cell carcinoma. Using a mouse model of melanoma where Nrp1-deficient (Nrp1-/-) and wild-type (Nrp1+/+) Tregs can be assessed in a competitive environment, we find that a high proportion of intratumoral Nrp1-/- Tregs produce interferon-γ (IFNγ), which drives the fragility of surrounding wild-type Tregs, boosts anti-tumor immunity, and facilitates tumor clearance. We also show that IFNγ-induced Treg fragility is required for response to anti-PD1, suggesting that cancer therapies promoting Treg fragility may be efficacious.


Assuntos
Carcinoma de Células Escamosas/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Interferon gama/imunologia , Melanoma/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Fatores de Transcrição Forkhead , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Microambiente Tumoral , Receptor de Interferon gama
8.
Immunity ; 45(2): 374-88, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27496732

RESUMO

Although tumor-specific T cells recognize cancer cells, they are often rendered dysfunctional due to an immunosuppressive microenvironment. Here we showed that T cells demonstrated persistent loss of mitochondrial function and mass when infiltrating murine and human tumors, an effect specific to the tumor microenvironment and not merely caused by activation. Tumor-infiltrating T cells showed a progressive loss of PPAR-gamma coactivator 1α (PGC1α), which programs mitochondrial biogenesis, induced by chronic Akt signaling in tumor-specific T cells. Reprogramming tumor-specific T cells through enforced expression of PGC1α resulted in superior intratumoral metabolic and effector function. Our data support a model in which signals in the tumor microenvironment repress T cell oxidative metabolism, resulting in effector cells with metabolic needs that cannot be met. Our studies also suggest that modulation or reprogramming of the altered metabolism of tumor-infiltrating T cells might represent a potential strategy to reinvigorate dysfunctional T cells for cancer treatment.


Assuntos
Neoplasias do Colo/imunologia , Linfócitos do Interstício Tumoral/imunologia , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Reprogramação Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais , Proteína Oncogênica v-akt/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transdução de Sinais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...