Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 74(10): 1450-1466, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35253894

RESUMO

OBJECTIVES: To develop a robust tablet design for the manufacture of gastro-retentive tablets using fused deposition modelling three-dimensional printing (FDM-3DP) that can provide prolonged gastric residence time with instant floating and minimum influence of process and/or formulation variables. METHODS: Three different polymers, such as polyvinyl alcohol (PVA), hydroxypropyl cellulose (HPC) and Soluplus were used, separately, for the manufacture of tablets using FDM-3DP. Tablets were designed in a sandwich model that included voids in the internal structure to support buoyancy. KEY FINDINGS: Fabricated tablets from all polymers were instantly buoyant with no floating lag time. Floating duration was in the order: HPC > Soluplus > PVA which can be explained by the density of the tablets. PVA tablets exhibited significantly (P < 0.05) higher density values (0.86 ± 0.02 mg/mm3) than HPC and Soluplus (0.69 ± 0.03 and 0.72 ± 0.02 mg/mm3, respectively). HPC and Soluplus showed similar zero-order drug release profiles (f2 > 50) and were able to sustain the release of theophylline for 12 h, whereas complete drug release was achieved from PVA tablets after 3 h. CONCLUSIONS: Robust gastro-retentive tablets that show instant buoyancy regardless of the polymeric carrier type and composition were successfully manufactured utilising FDM-3DP. This allows for overcoming the restrictions posed by process/formulation parameters on the floatability of gastro-retentive tablets.


Assuntos
Álcool de Polivinil , Teofilina , Liberação Controlada de Fármacos , Polietilenoglicóis , Polímeros , Álcool de Polivinil/química , Polivinil , Impressão Tridimensional , Comprimidos/química , Tecnologia Farmacêutica/métodos
2.
Int J Pharm ; 605: 120818, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34174359

RESUMO

During pandemics and global crises, drug shortages become critical as a result of increased demand, shortages in personnel and lockdown restrictions that disrupt the supply chain. The pharmaceutical industry is therefore moving towards continuous manufacturing instead of conventional batch manufacturing involving numerous steps, that normally occur at different sites. In order to validate the use of large-scale industrial processes, feasibility studies need to be performed using small-scale laboratory equipment. To that end, the scale-up of a continuous process and its effect on the critical quality attributes (CQAs) of the end product were investigated in this work. Hydroxychloroquine Sulphate (HCQS) was used as the model drug, Soluplus® as a model polymeric carrier and both horizontal and vertical twin screw extruders used to undertake this hot melt extrusion (HME) study. Seven formulations were processed using a small-scale horizontal extruder and a pilot-scale vertical extruder at various drug loadings, temperature profiles and screw speeds. When utilising a horizontal extruder, formulations with the highest drug load and processed at the lowest screw speed and temperature had the highest crystallinity with higher drug release rates. Upon scale-up to a vertical extruder, the crystallinity of the HCQS was significantly reduced, with less variation in both crystallinity and release profile across the different extrudates. This study demonstrates improved robustness with the pilot-scale vertical extruder compared to lab-scale horizontal extruder. The reduced variation with the vertical extruder will allow for short increases in production rate, with minimum impact on the CQAs of the final product enabling high-performance continuous manufacturing with minimum waste of raw materials. Finally, this research provides valuable information for the pharmaceutical industry in accessing continuous technologies for the manufacture of pharmaceutical products, allowing for efficient utilisation of resources upon scale-up and mass production during global pandemics and drug shortages.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Preparações Farmacêuticas , Química Farmacêutica , Composição de Medicamentos , Temperatura Alta , Hidroxicloroquina , Pandemias , Tecnologia Farmacêutica
3.
Int J Pharm ; 592: 120024, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33130221

RESUMO

Complications associated with uncontrolled hypertension are considered the major cause of premature death worldwide. Fixed-dose combinations (FDCs) offer an alternative approach to polypharmacy with the aim to improve patient compliance. Process Analytical Technology (PAT) is gaining momentum as a non-invasive, predictive tool to control the quality of drugs during continuous processing. PAT offers real-time quality control that can be built into the production line. However, the vast majority of studies reported in the literature have focused on quantifying a single drug during continuous processing. The aim of this study was to develop non-destructive, predictive inline PAT tools allowing for the simultaneous quantification of two antihypertensive drugs, Hydrochlorothiazide (HCTZ) and Ramipril (RMP), during the continuous manufacture of FDCs. A calibration set composed of HCTZ and RMP at concentration ranges of 6.5 to 40 and 2.5-15 (% w/w), respectively, were manufactured using hot melt extrusion. The extrudates were analysed during the process using inline Raman spectroscopy. Optimum wavenumber regions were observed at 200-400 and 630-730 cm-1 for HCTZ, and 980-1100 cm-1 for RMP using principal component analysis. Partial least squares (PLS) regression was performed to establish the predictive calibration models. The PLS developed models showed excellent linearity (R2 = 0.986 and 0.974), selectivity (PC1 = 98.6% and 91.9%) and accuracy (RMSEcv = 1.586 and 0.645%) for HCTZ and RMP, respectively. Additionally, RMSEP values were reported as 1.237 and 1.007% for HCTZ and RMP, respectively, depicting good predictability for drug content in the validation set. The output of this study demonstrated that utilisation of the full potential of chemometrics, Raman spectroscopy can be used for the simultaneous inline quantification of multiple drugs in complex formulations. This facilitates the in-process quality control of FDCs and other multicomponent systems during continuous pharmaceutical production.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Preparações Farmacêuticas , Composição de Medicamentos , Humanos , Controle de Qualidade , Ramipril , Tecnologia Farmacêutica
4.
Int J Pharm ; 584: 119382, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32360547

RESUMO

Continuous processing is superseding conventional batch processing as a means of manufacturing within the pharmaceutical research/industry. This paradigm shift has led to the implementation of Process Analytical Technology (PAT) as a semi-automatic, predictive tool offering real-time quality control that can be built into the production line. However, PAT tools have been mainly utilised to monitor a single process (e.g. powder blending, synthesis of biopharmaceuticals and small molecules) rather than a full continuous manufacturing process. In addition, there is a paucity of guidance documents that consider the continuous and dynamic conditions of real-time measurements for validation purposes. In this study, the feasibility of developing and validating a predictive and reliable Raman method based on quality by design (QbD) and PAT frameworks for the real-time quantification of Ramipril (RMP) during hot-melt extrusion (HME) were investigated. Through QbD, a design space elucidating the quality attributes of RMP stability was successfully identified based on offline HPLC measurements. Process temperature and powder feeding rate were the main quality attributes to affect the stability of RMP during HME. The optimum combination of process and formulation variables were extracted from the validated design space and used to extrude RMP at a concentration range of 2.5-12.5 %w/w. Three calibration models were established using PLS regression analysis. The developed PLS calibration models showed excellent linearity (R2 = 0.989, 0.995, 0.992), accuracy (RMSEcv = 0.31, 0.26, 0.30%) and specificity (PC1 = 81, 85, 89%) for models 1, 2 and 3, respectively. Furthermore, the developed QbD-PAT model was able to predict the quantity of RMP at varied process feed rate (10, 35 rpm) operating under long processing time (60 min). The output of this study allows in-process optimisation of formulation and process variables to control the quality and quantity of RMP during HME. Furthermore, it allows the implementation of PAT tools as routine methods of analysis within the laboratory.


Assuntos
Ácidos Polimetacrílicos/química , Ramipril/administração & dosagem , Tecnologia Farmacêutica/métodos , Relação Dose-Resposta a Droga , Temperatura Alta , Análise de Componente Principal , Controle de Qualidade , Ramipril/química , Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral Raman , Tecnologia Farmacêutica/normas
5.
ACS Biomater Sci Eng ; 6(1): 21-37, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463201

RESUMO

The development and evaluation of a controlled-release (CR) pharmaceutical solid dosage form comprising xanthan gum (XG), low molecular weight chitosan (LCS), and metoprolol succinate (MS) are reported. The research is, partly, based upon the utilization of computational tools: in this case, molecular dynamics simulations (MDs) and the response surface method (RSM) in order to underpin the design/prediction and to minimize the experimental work required to achieve the desired pharmaceutical outcomes. The capability of the system to control the release of MS was studied as a function of LCS (% w/w) and total polymer (LCS and xanthan gum (XG)) to drug ratio (P/D) at different tablet tensile strengths. MDs trajectories, obtained by using different ratios of XG/LCS as well as XG and high molecular weight chitosan (HCS), showed that the driving force for the interaction between XG and LCS is electrostatic in nature, the most favorable complex is formed when LCS is used at 15% (w/w) and, importantly, the interaction between XG and LCS is more favorable than that between XG and HCS. RSM outputs revealed that the release of the drug from the LCS/XG matrix is highly dependent on both the % LCS and the P/D ratio and that the required CR effect can be achieved when using weight fractions of LCS ≤ 20% and P/D ratios ≥2.6:1. Results obtained from in vitro drug release and swelling studies on the prepared tablets showed that using LCS at the weight fractions suggested by MDs and RSM data plays a major role in overcoming the high sensitivity of the controlled drug release effect of XG on ionic strength and pH changes of the dissolution media. In addition, it was found that polymer relaxation is the major contributor to the release of MS from LCS/XG tablets. Using Raman spectroscopy, MS was shown to be localized more in the core of the tablets at the initial stages of dissolution due to film formation between LCS and XG on the tablet surface, which prevents excess water penetration into the matrix. In the later stages of the dissolution process, the film starts to dissolve/erode, allowing full tablet hydration and a uniform drug distribution in the swollen tablet.


Assuntos
Quitosana , Metoprolol , Química Farmacêutica , Preparações de Ação Retardada , Polímeros , Polissacarídeos Bacterianos
6.
Pharmaceutics ; 11(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726799

RESUMO

The subject of our research is the optimization of direct compression (DC), controlled release drug matrices comprising chitosan/xanthan gum. The foregoing is considered from two main perspectives; the use of low molecular weight chitosan (LCS) with xanthan gum (XG) and the determination of important attributes for direct compression of the mixtures of the two polymers. Powder flow, deformation behaviour, and work of compression parameters were used to characterize powder and tableting properties. Compression pressure and LCS content within the matrix were investigated for their influence on the crushing strength of the tablets produced. Response surface methodology (RSM) was applied to determine the optimum parameters required for DC of the matrices investigated. Results confirm the positive contribution of LCS in enhancing powder compressibility and crushing strength of the resultant compacts. Compactibility of the XG/LCS mixtures was found to be more sensitive to applied compression pressure than LCS content. LCS can be added at concentrations as low as 15% w/w to achieve hard compacts, as indicated by the RSM results. The introduction of the plasticity factor, using LCS, to the fragmenting material XG was the main reason for the high volume reduction and reduced porosity of the polymer mixture. Combinations of XG with other commonly utilized polymers in controlled release studies such as glucosamine, hydroxypropyl methylcellulose (HPMC), Na alginate (ALG), guar gum, lactose and high molecular weight (HMW) chitosan were also used; all the foregoing polymers failed to reduce the matrix porosity beyond a certain compression pressure. Application of the LCS/XG mixture, at its optimum composition, for the controlled release of two model drugs (metoprolol succinate and dyphylline) was examined. The XG/LCS matrix at 15% w/w LCS content was found to control the release of metoprolol succinate and dyphylline. The former preparation confirmed the strong influence of compression pressure on changing the drug release profile. The latter preparation showed the ability of XG/LCS to extend the drug release at a fixed rate for 12 h of dissolution time after which the release became slightly slower.

7.
Mar Drugs ; 15(10)2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946687

RESUMO

Hydrophilic matrices composed of chitosan (CS) and xanthan gum (XG) complexes are of pharmaceutical interest in relation to drug delivery due to their ability to control the release of active ingredients. Molecular dynamics simulations (MDs) have been performed in order to obtain information pertaining to the effect of the state of protonation and degree of N-acetylation (DA) on the molecular conformation of chitosan and its ability to interact with xanthan gum in aqueous solutions. The conformational flexibility of CS was found to be highly dependent on its state of protonation. Upon complexation with XG, a substantial restriction in free rotation around the glycosidic bond was noticed in protonated CS dimers regardless of their DA, whereas deprotonated molecules preserved their free mobility. Calculated values for the free energy of binding between CS and XG revealed the dominant contribution of electrostatic forces on the formation of complexes and that the most stable complexes were formed when CS was at least half-protonated and the DA was ≤50%. The results obtained provide an insight into the main factors governing the interaction between CS and XG, such that they can be manipulated accordingly to produce complexes with the desired controlled-release effect.


Assuntos
Quitosana/química , Polissacarídeos Bacterianos/química , Acetilação , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Eletricidade Estática , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...