Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 24(39): 9957-9967, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29939431

RESUMO

The intestinal disease shigellosis caused by Shigella bacteria affects over 120 million people annually. There is an urgent demand for new drugs as resistance against common antibiotics emerges. Bacterial tRNA-guanine transglycosylase (TGT) is a druggable target and controls the pathogenicity of Shigella flexneri. We report the synthesis of sugar-functionalized lin-benzoguanines addressing the ribose-33 pocket of TGT from Zymomonas mobilis. Ligand binding was analyzed by isothermal titration calorimetry and X-ray crystallography. Pocket occupancy was optimized by variation of size and protective groups of the sugars. The participation of a polycyclic water-cluster in the recognition of the sugar moiety was revealed. Acetonide-protected ribo- and psicofuranosyl derivatives are highly potent, benefiting from structural rigidity, good solubility, and metabolic stability. We conclude that sugar acetonides have a significant but not yet broadly recognized value in drug development.


Assuntos
Guanina/química , Pentosiltransferases/química , RNA de Transferência/química , Ribose/química , Açúcares/química , Zymomonas/química , Cristalografia por Raios X , Estrutura Molecular , Pentosiltransferases/metabolismo , Ligação Proteica , Solventes
3.
BMC Genomics ; 16: 932, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26573612

RESUMO

BACKGROUND: In the past decade the Göttingen minipig has gained increasing recognition as animal model in pharmaceutical and safety research because it recapitulates many aspects of human physiology and metabolism. Genome-based comparison of drug targets together with quantitative tissue expression analysis allows rational prediction of pharmacology and cross-reactivity of human drugs in animal models thereby improving drug attrition which is an important challenge in the process of drug development. RESULTS: Here we present a new chromosome level based version of the Göttingen minipig genome together with a comparative transcriptional analysis of tissues with pharmaceutical relevance as basis for translational research. We relied on mapping and assembly of WGS (whole-genome-shotgun sequencing) derived reads to the reference genome of the Duroc pig and predict 19,228 human orthologous protein-coding genes. Genome-based prediction of the sequence of human drug targets enables the prediction of drug cross-reactivity based on conservation of binding sites. We further support the finding that the genome of Sus scrofa contains about ten-times less pseudogenized genes compared to other vertebrates. Among the functional human orthologs of these minipig pseudogenes we found HEPN1, a putative tumor suppressor gene. The genomes of Sus scrofa, the Tibetan boar, the African Bushpig, and the Warthog show sequence conservation of all inactivating HEPN1 mutations suggesting disruption before the evolutionary split of these pig species. We identify 133 Sus scrofa specific, conserved long non-coding RNAs (lncRNAs) in the minipig genome and show that these transcripts are highly conserved in the African pigs and the Tibetan boar suggesting functional significance. Using a new minipig specific microarray we show high conservation of gene expression signatures in 13 tissues with biomedical relevance between humans and adult minipigs. We underline this relationship for minipig and human liver where we could demonstrate similar expression levels for most phase I drug-metabolizing enzymes. Higher expression levels and metabolic activities were found for FMO1, AKR/CRs and for phase II drug metabolizing enzymes in minipig as compared to human. The variability of gene expression in equivalent human and minipig tissues is considerably higher in minipig organs, which is important for study design in case a human target belongs to this variable category in the minipig. The first analysis of gene expression in multiple tissues during development from young to adult shows that the majority of transcriptional programs are concluded four weeks after birth. This finding is in line with the advanced state of human postnatal organ development at comparative age categories and further supports the minipig as model for pediatric drug safety studies. CONCLUSIONS: Genome based assessment of sequence conservation combined with gene expression data in several tissues improves the translational value of the minipig for human drug development. The genome and gene expression data presented here are important resources for researchers using the minipig as model for biomedical research or commercial breeding. Potential impact of our data for comparative genomics, translational research, and experimental medicine are discussed.


Assuntos
Genoma , Porco Miniatura/genética , Envelhecimento/genética , Animais , Cromossomos , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Pseudogenes , Especificidade da Espécie , Suínos , Transcrição Gênica
4.
J Med Chem ; 54(20): 7299-317, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21916510

RESUMO

New phenoxyacetic acid antagonists of CRTH2 are described. Following the discovery of a hit compound by a focused screening, high protein binding was identified as its main weakness. Optimization aimed at reducing serum protein binding led to the identification of several compounds that showed not only excellent affinities for the receptor (41 compounds with K(i) < 10 nM) but also excellent potencies in a human whole blood assay (IC(50) < 100 nM; PGD2-induced eosinophil shape change). Additional optimization of the PK characteristics led to the identification of several compounds suitable for in vivo testing. Of these, 19k and 19s were tested in two different pharmacological models (acute FITC-mediated contact hypersensitivity and ovalbumin-induced eosinophilia models) and found to be active after oral dosing (10 and 30 mg/kg).


Assuntos
Acetatos/síntese química , Alcinos/síntese química , Antialérgicos/síntese química , Anti-Inflamatórios/síntese química , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Sulfonas/síntese química , Acetatos/farmacocinética , Acetatos/farmacologia , Administração Oral , Alcinos/farmacocinética , Alcinos/farmacologia , Animais , Antialérgicos/farmacocinética , Antialérgicos/farmacologia , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Ligação Competitiva , Proteínas Sanguíneas/metabolismo , Células CACO-2 , Permeabilidade da Membrana Celular , Forma Celular , Quimiotaxia de Leucócito , Dermatite de Contato/tratamento farmacológico , Eosinófilos/efeitos dos fármacos , Eosinófilos/patologia , Eosinófilos/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Ovalbumina/imunologia , Fenoxiacetatos , Ligação Proteica , Eosinofilia Pulmonar/tratamento farmacológico , Eosinofilia Pulmonar/imunologia , Ensaio Radioligante , Ratos , Relação Estrutura-Atividade , Sulfonas/farmacocinética , Sulfonas/farmacologia
5.
ACS Med Chem Lett ; 2(12): 938-42, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900284

RESUMO

Antagonism of the CRTH2 receptor represents a very attractive target for a variety of allergic diseases. Most CRTH2 antagonists known to date possess a carboxylic acid moiety, which is essential for binding. However, potential acid metabolites O-acyl glucuronides might be linked to idiosynchratic toxicity in humans. In this communication, we describe a new series of compounds that lack the carboxylic acid moiety. Compounds with high affinity (K i < 10 nM) for the receptor have been identified. Subsequent optimization succeeded in reducing the high metabolic clearance of the first compounds in human and rat liver microsomes. At the same time, inhibition of the CYP isoforms was optimized, giving rise to stable compounds with an acceptable CYP inhibition profile (IC50 CYP2C9 and 2C19 > 1 µM). Taken together, these data show that compounds devoid of carboxylic acid groups could represent an interesting alternative to current CRTH2 antagonists in development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...