Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 9405-9419, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571176

RESUMO

In this paper, we present the design, optimization, and implementation of a sub-wavelength grating (SWG) multi-mode interference coupler (MMI) on the silicon nitride photonic integrated circuit (PIC) platform with a significantly enhanced bandwidth compared to the conventional MMI. We extend the SWG MMI theory, previously presented for the silicon-on-insulator platform, to the Si3N4/SiO2 platform. Our approach involves an initial parameter optimization for a non-paired design, followed by a shift to a paired design that offers a smaller footprint and a broader bandwidth. The optimized SWG MMI exhibits a 1 dB bandwidth of 300 nm for both the insertion loss and power imbalance, making it a significant addition to silicon nitride photonics.

2.
Opt Express ; 31(21): 34688-34696, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859219

RESUMO

Photonic integrated circuits based on ultralow loss silicon nitride waveguides have shown significant promise for realizing high-performance optical systems in a compact and scalable form factor. For the first time, we have developed a Fabry-Perot Bragg grating nanoresonator based on silicon nitride on silicon dioxide platform with an ultra-high intrinsic quality factor of 19.3 million. By combining the introduction of tapered grating between cavity and periodic Bragg grating, increasing the width of cavity to multi-mode region and optimized annealing strategy for Si3N4 film, the propagation loss is reduced to around 0.014 dB/cm. Fabry-Perot Bragg grating nanoresonator can be easily implemented in a simple straight waveguide occupying a minimal amount of space. Therefore, it is a key component to build a high performance photonic integrated circuit for many applications.

3.
Opt Express ; 31(4): 6389-6400, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823896

RESUMO

To provide a solution to the issue of the non-flat focal surface in traditional Rowland AWGs, we have designed and implemented a Si3N4 three-stigmatic-point arrayed waveguide grating (TSP AWG) with three inputs, and a spectral resolving power over 17,000 has been achieved experimentally. The flat focal surface of this AWG can accommodate a butt-coupled detector array positioned at the output facet without any reduction of the resolving power of the edge channels. Therefore, it is particularly advantageous to some astronomical applications which require an AWG as a light-dispersing component to obtain a complete 2D spectrum. As a proof-of-concept for next generation devices, the multi-input aspect of the design accommodates multiple single-mode fibers coming into the AWG. In addition, because the device is implemented on a high-index-contrast platform (Si3N4/SiO2), a compact size of ∼9.3 × 9.3 mm2 is achieved.

4.
Opt Express ; 29(10): 14476-14485, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985170

RESUMO

We present the design and experimental results of a novel polarization beam splitter (PBS) with a high polarization extinction ratio (PER) made on a Si3N4 platform. The PBS is composed of two identical polarization-independent multi-mode interferometers and two identical apodized Bragg gratings. The operating principle of this device is based on the fact that the TE and TM stopbands of the grating are centered at different wavelengths. The reflected and transmitted light from the gratings are routed to separate output ports by the two-MMI configuration. The experimental results show that a PER of > 30 dB is achieved over a bandwidth of 22 nm, with an insertion loss of ∼ 1.1 dB. The total length of the device is ∼ 820 µm.

5.
IEEE Trans Vis Comput Graph ; 26(12): 3503-3513, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32941146

RESUMO

Thermally modulated Nanophotonic Phased Arrays (NPAs) can be used as phase-only holographic displays. Compared to the holographic displays based on Liquid Crystal on Silicon Spatial Light Modulators (LCoS SLMs), NPAs have the advantage of integrated light source and high refresh rate. However, the formation of the desired wavefront requires accurate modulation of the phase which is distorted by the thermal proximity effect. This problem has been largely overlooked and existing approaches to similar problems are either slow or do not provide a good result in the setting of NPAs. We propose two new algorithms based on the iterative phase retrieval algorithm and the proximal algorithm to address this challenge. We have carried out computational simulations to compare and contrast various algorithms in terms of image quality and computational efficiency. This work is going to benefit the research on NPAs and enable the use of large-scale NPAs as holographic displays.

6.
Opt Lett ; 43(24): 6045-6048, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548001

RESUMO

We present a silicon nitride/silicon dioxide add-drop filter operating on arbitrarily spaced channels using multimode interferometers (MMIs) and complex waveguide Bragg gratings (CWBGs). The add-drop filter shows a rejection ratio of >40 dB on all five channels, with a line width of 1.2 nm and an on-chip loss of <1 dB. By designing the CWBG with the Layer Peeling/Layer Adding algorithm, this MMI-CWBG add-drop filter platform has the capability for ultrabroadband add-drop operation on arbitrarily spaced channels.

7.
Opt Express ; 25(15): 17918-17935, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789281

RESUMO

One promising application of photonics to astronomical instrumentation is the miniaturization of near-infrared (NIR) spectrometers for large ground- and space-based astronomical telescopes. Here we present new results from our effort to fabricate arrayed waveguide grating (AWG) spectrometers for astronomical applications entirely in-house. Our latest devices have a peak overall of ∼23%, a spectral resolving power (λ/δλ) of ~1300, and cover the entire H band (1450-1650 nm) for Transverse Electric (TE) polarization. These AWGs use a silica-on-silicon platform with a very thin layer of Si3N4 as the core of the waveguides. They have a free spectral range of ~10 nm at a of ~1600 about wavelength nm and a contrast ratio or crosstalk of 2% (-17 dB). Various practical aspects of implementing AWGs as astronomical spectrographs are discussed, including the coupling of the light between the fibers and AWGs, high-temperature annealing to improve the throughput of the devices at ~1500 nm, cleaving at the output focal plane of the AWG to provide continuous wavelength coverage, and a novel algorithm to make the devices polarization insensitive over a broad band. These milestones will guide the development of the next generation of AWGs with wider free spectral range and higher resolving power and throughput.

8.
J Appl Phys ; 120(23)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28584383

RESUMO

Charge carrier lifetimes in photovoltaic-grade silicon wafers were measured by a spectral-dependent, quasi-steady-state photoconductance technique. Narrow bandwidth light emitting diodes (LEDs) were used to excite excess charge carriers within the material, and the effective lifetimes of these carriers were measured as a function of wavelength and intensity. The dependence of the effective lifetime on the excitation wavelength was then analyzed within the context of an analytical model relating effective lifetime to the bulk lifetime and surface recombination velocity of the material. The agreement between the model and the experimental data provides validation for this technique to be used at various stages of the solar cell production line to investigate the quality of the passivation layers and the bulk properties of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...