Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(4): 1043-1059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289529

RESUMO

Levels and chemical species of reactive oxygen/nitrogen species (ROS/RNS) determine oxidative eustress and distress. Abundance of uptake pathways and high oxygen consumption for ATP-dependent transport makes the renal proximal tubule particularly susceptible to cadmium (Cd2+)-induced oxidative stress by targeting ROS/RNS generation or antioxidant defence mechanisms, such as superoxide dismutase (SOD) or H2O2-metabolizing catalase (CAT). Though ROS/RNS are well-evidenced, the role of distinct ROS profiles in Cd2+ concentration-dependent toxicity is not clear. In renal cells, Cd2+ (10-50 µM) oxidized dihydrorhodamine 123, reaching a maximum at 2-3 h. Increases (up to fourfold) in lipid peroxidation by TBARS assay and H2O2 by Amplex Red were evident within 30 min. ROS and loss in cell viability by MTT assay with 50 µM Cd2+ could not be fully reversed by SOD mimetics Tempol and MnTBAP nor by SOD1 overexpression, whereas CAT expression and α-tocopherol were effective. SOD and CAT activities were attenuated below controls only with >6 h 50 µM Cd2+, yet augmented by up to 1.5- and 1.2-fold, respectively, by 10 µM Cd2+. Moreover, 10 µM, but not 25-50 µM Cd2+, caused 1.7-fold increase in superoxide anion (O2•-), detected by dihydroethidium, paralled by loss in cell viability, that was abolished by Tempol, MnTBAP, α-tocopherol and SOD1 or CAT overexpression. H2O2-generating NADPH oxidase 4 (NOX4) was attenuated by ~50% with 10 µM Cd2+ at 3 h compared to upregulation by 50 µM Cd2+ (~1.4-fold, 30 min), which was sustained for 24 h. In summary, O2•- predominates with low-moderate Cd2+, driving an adaptive response, whereas oxidative stress by elevated H2O2 at high Cd2+ triggers cell death signaling pathways.Highlights Different levels of reactive oxygen species are generated, depending on cadmium concentration. Superoxide anion predominates and H2O2 is suppressed with low cadmium representing oxidative eustress. High cadmium fosters H2O2 by inhibiting catalase and increasing NOX4 leading to oxidative distress. Superoxide dismutase mimetics and overexpression were less effective with high versus low cadmium. Oxidative stress profile could dictate downstream signalling pathways.


Assuntos
Cádmio , Óxidos N-Cíclicos , Metaloporfirinas , Marcadores de Spin , Superóxidos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cádmio/toxicidade , Catalase/metabolismo , Catalase/farmacologia , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Rim , Superóxido Dismutase/metabolismo , Linhagem Celular
2.
Arh Hig Rada Toksikol ; 67(3): 210-215, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749260

RESUMO

Nickel is an abundant carcinogenic and nephrotoxic metal whose activity leads to renal impairment. Previous studies have shown a protective effect of simultaneous vitamin C administration on acute and chronic nickel toxicity. However, very little research relating to the effect of vitamin C pretreatment in preventing nickel-induced acute nephrotoxicity is available. Therefore, the present study aimed to determine the efficiency of vitamin C (VC) pretreatment in preventing acute renal toxicity of nickel. Mice were pretreated orally with vitamin C (16.6 mg kg-1 body weight, b.w.) for seven consecutive days, prior to intraperitoneal (i.p.) administration of nickel chloride at different doses (3, 5, and 10 mg Ni kg-1 b.w.) for an exposure period of 24 hours. Thereafter, animals were killed and kidney tissue and blood samples were taken for histological examination and biochemical marker analyses. Vitamin C pretreatment alone did not alter the levels of serum kidney markers (creatinine, urea, and uric acid). However, treatment with Ni alone showed a significant increase in the levels of serum creatinine, urea, and uric acid with marked necrotic epithelial cells and infiltration by inflammatory cells in kidney sections as compared to the control group. Pretreatment with vitamin C and treatment with Ni at all doses tested for 24 hours showed a significant decrease in the levels of serum creatinine, urea, and uric acid, as well as an improvement in histological changes compared to those previously seen in the group treated with Ni alone. It is concluded that vitamin C pretreatment effectively improved renal function and tissue damage caused by nickel.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Distúrbios Induzidos Quimicamente/tratamento farmacológico , Níquel/toxicidade , Substâncias Protetoras/uso terapêutico , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Testes de Função Renal , Masculino , Camundongos , Substâncias Protetoras/farmacologia
3.
Arch Toxicol ; 88(4): 881-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24448832

RESUMO

Nickel and nickel compounds are carcinogens that target the lungs and kidneys causing cell death or cell survival adaptation. The multidrug resistance P-glycoprotein ABCB1 protects cells against toxic metabolites and xenobiotics and is upregulated in many cancer cell types. Here, we investigated the role of ABCB1 in nickel-induced stress signaling mediated by reactive oxygen species (ROS) and ceramides. In renal proximal tubule cells, nickel chloride (0.1-0.25 mM) increased both ROS formation, detected by 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and cellular ceramides, which were determined by lipid dot blot and surface immunostaining, culminating in decreased cell viability, increased DNA fragmentation, augmented PARP-1 cleavage, and increased ABCB1 mRNA and protein. Inhibitors of the de novo ceramide synthesis pathway (fumonisin B1, L-cycloserine) and an antioxidant (α-tocopherol) attenuated nickel-induced toxicity as well as induction of ABCB1. ABCB1 protects against nickel toxicity as PSC833, an ABCB1 blocker, augmented the decrease in cell viability by nickel. Moreover, nickel toxicity was attenuated in renal MDCK cells stably overexpressing ABCB1. In agreement with previous data that demonstrated extrusion of (glucosyl)ceramides by ABCB1 (Lee et al. in Toxicol Sci 121:343, 2011), PSC833 increased total cellular ceramides by >2-fold after nickel treatment. Further, glucosylceramide synthase (GCS) mRNA is upregulated by nickel at 3 h by ~1.5-fold but declined with prolonged exposures (6-24 h). Inhibition of GCS with C9DGJ or knockdown of GCS with siRNA significantly attenuated nickel toxicity. In conclusion, nickel induces a ROS-ceramide pathway to cause apoptotic cell death as well as activate adaptive survival responses, including upregulation of ABCB1, which improves cell survival by extruding proapoptotic (glucosyl)ceramides.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Glucosilceramidas/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Níquel/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Células Madin Darby de Rim Canino , Interferência de RNA , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...