Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
J Thorac Dis ; 16(2): 1715-1723, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505012

RESUMO

Chemoradiotherapy followed by surgical resection (trimodality therapy) is a guideline recommended treatment for sulcus superior tumors (SST). By definition, SSTs invade the chest wall and therefore require en-bloc chest wall resection with the upper lung lobe or segments. The addition of a chest wall resection, potentially results in higher morbidity and mortality rates when compared to standard anatomical pulmonary resection. This, together with their anatomical location in the thoracic outlet, and varying grades of fibrosis and adhesions resulting from induction chemoradiotherapy in the operation field, make surgery challenging. Depending on the exact location of the tumor and extent to which it invades the surrounding structures, the preferred surgical approach may vary, e.g., anterior, posterolateral, hemi-clamshell, or combined approach; all with their own potential advantages and morbidities. Careful patient selection, adequate staging and discussion in a multidisciplinary tumor board in a center experienced in complex thoracic oncology leads to the best long-term survival outcomes with the least morbidity and mortality. Enhanced recovery guidelines are now available for thoracic surgery, promoting faster recovery and helping to minimize complications and morbidity, including infections and thoracotomy pain. Although minimally invasive surgery can enhance recovery and reduce chest wall morbidity, and is in widespread use in thoracic oncology, its use for SST has been limited. However, this is an evolving area and hybrid surgical approaches (including use of the robot) are being reported. Chest wall reconstruction is rarely necessary, but if so, the prosthetic materials are preferably radiolucent/non-scattering, rigid enough while still being somewhat flexible, and inert, providing structural support, allowing chest wall movement, and closing defects, while inciting a limited inflammatory response. New techniques such as 3D image reconstructions/volume rendering, 3D-printing, and virtual reality modules may help pre-operative planning and informed patient consent.

3.
Eur J Cancer ; 196: 113424, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977106

RESUMO

INTRODUCTION: Historically, stage IV adrenocortical carcinoma (mACC) has a poor prognosis with a median overall survival (OS) of only 5 months. Based on the FIRM-ACT trial published in 2012, guidelines now advise first line systemic treatment with etoposide, cisplatin, doxorubicin and mitotane (EDP-M). The effect of EDP-M on patient survival in clinical practice in the Netherlands is unknown. METHODS: The data of all patients with mACC (2005-2020) were obtained from the Netherlands comprehensive cancer organization (IKNL). The effect of EDP-M on patient survival was assessed using Kaplan-Meier analysis and multivariate Cox regression analysis including clinical, therapy and tumor characteristics. RESULTS: In total 167 patients with mACC were included. For patients diagnosed from 2014 onwards, EDP-M (in 22 patients (22%)) lead to a numerically but not statistically significant improved OS compared to those not receiving EDP-M (11.8 vs 5.6 months, p = 0.525). For systemic treatments, patients treated with mitotane only had the best 5-year OS (11.4%, p = 0.006) regardless of year of diagnosis. In multivariate Cox regression analysis EPD-M was not associated with OS; palliative adrenalectomy (HR: 0.26, p = <.001) and local treatment of metastases (HR: 0.35, p = 0.001) were associated with a better OS and a primary tumor Ki-67 index > 20% (HR: 2.67, p = 0.003) with a worse OS from 2014 onwards. Patients diagnosed before 2014 had a significantly poorer OS compared to from 2014 onwards (5-yr: 4.5 vs 8.4%, OS: 6.8 vs 8.3 months, p = 0.032). CONCLUSION: OS for mACC in the Netherlands has improved in the last decade. Receiving EDP-M did not significantly improve OS for patients with mACC. The use of multimodality treatment including palliative adrenalectomy, mitotane and local treatment of (oligo-)metastases in appropriately selected patients has improved the OS for mACC patients since 2014.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/etiologia , Mitotano/uso terapêutico , Mitotano/efeitos adversos , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Etoposídeo , Cisplatino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
4.
Int J Radiat Oncol Biol Phys ; 118(2): 525-532, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652305

RESUMO

PURPOSE: Spine stereotactic body radiation therapy (SBRT) requires high positioning accuracy and a stable patient to maximize target coverage and reduce excessive irradiation to organs at risk. Positional verification during spine SBRT delivery helps to ensure accurate positioning for all patients. We report our experience with noninvasive 3-dimensional target position monitoring during volumetric modulated arc therapy of spine metastases in nonimmobilized patients positioned using only a thin mattress and simple arm and knee supports. METHODS AND MATERIALS: Fluoroscopic planar kV images were acquired at 7 frames/s using the on-board imaging system during volumetric modulated arc therapy spine SBRT. Template matching and triangulation were used to track the target in vertical, longitudinal, and lateral directions. If the tracking trace deviated >1 mm from the planned position in ≥1 direction, treatment was manually interrupted and 6-dimensional cone beam computed tomography (CBCT)-based couch correction was performed. Tracking data were used to retrospectively analyze the target position. Positional data, agreement with CBCT, correlation between position of the couch and direction of any positional correction, and treatment times were analyzed. RESULTS: In total, 175 fractions were analyzed. Delivery was interrupted 83 times in 66 fractions for a deviation >1 mm. In 97% of cases the difference between tracking data and subsequent clinical shift performed after the CBCT match was ≤0.5 mm. Lateral/longitudinal shift performed after intervention correlated with the couch roll/pitch at the start of treatment (correlation coefficient, -0.63/0.53). Mean (SD; range) time between start of first imaging and end of the last arc was 15.2 minutes (5.1; 7.6-36.3). CONCLUSIONS: Spine tracking during irradiation can be used to prompt an intervention CBCT scan and repositioning so that a spine SBRT target deviates by ≤1 mm from the planned position, even in nonimmobilized patients. kV tracking and CBCT are in good agreement. The data support verification CBCT after all 6 degrees-of-freedom positional corrections in nonimmobilized spine SBRT patients.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Radiocirurgia/métodos , Movimento , Estudos Retrospectivos , Coluna Vertebral , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
5.
JTO Clin Res Rep ; 4(12): 100582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046379

RESUMO

Introduction: Curative-intent treatment of superior sulcus tumors (SSTs) of the lung invading the spine presents considerable challenges. We retrospectively studied outcomes in a single center, uniformly staged patient cohort treated with induction concurrent chemoradiotherapy followed by surgical resection (trimodality therapy). Methods: An institutional surgical database from the period between 2002 and 2021 was accessed to identify SSTs in which the resection included removal of at least part of the vertebral body. All patients were staged using fluorodeoxyglucose positron emission tomography (/computed tomography), computed tomography scan of the chest/upper abdomen, and brain imaging. Surgical morbidity was assessed using the Clavien-Dindo classification. Overall and disease-free survival were calculated using the Kaplan-Meier method. Results: A total of 18 patients were included: 8 complete and 10 partial vertebrectomies were performed, with six of the eight complete vertebrectomies involving two vertebral levels, resulting in Complete surgical resection (R0) in 94%. Nine patients had a 1-day procedure, and nine were staged over 2 days. The median follow-up was 30 months (interquartile range 11-57). The 90-day postoperative morbidity was 44% (grade III/IV), with no 90-day surgery-related mortality. There were 83% who had a major pathologic response, associated with improved survival (p = 0.044). The 5-year overall and disease-free survival were 55% and 40%, respectively. Disease progression occurred in 10 patients, comprising locoregional recurrences in two and distant metastases in eight patients. Conclusions: Multimodality treatment in selected patients with a superior sulcus tumor invading the spine is safe and results in good survival. Such patients should be referred to expert centers. Future research should focus on improving distant control (e.g. [neo]adjuvant immunotherapy).

6.
Cancers (Basel) ; 15(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958360

RESUMO

BACKGROUND: Pulmonary metastasectomy and stereotactic ablative radiotherapy (SABR) are both guideline-recommended treatments for selected patients with oligometastatic colorectal pulmonary metastases. However, there is limited evidence comparing these local treatment modalities in similar patient groups. METHODS: We retrospectively reviewed records of consecutive patients treated for colorectal pulmonary metastases with surgical metastasectomy or SABR from 2012 to 2019 at two Dutch referral hospitals that had different approaches toward the local treatment of colorectal pulmonary metastases, one preferring surgery, the other preferring SABR. Two comparable patient groups were identified based on tumor and treatment characteristics. RESULTS: The metastasectomy group comprised 40 patients treated for 69 metastases, and the SABR group had 60 patients who were treated for 90 metastases. Median follow-up was 38 months (IQR: 26-67) in the surgery group and 46 months (IQR: 30-79) in the SABR group. Median OS was 58 months (CI: 20-94) in the metastasectomy group and 70 months (CI: 29-111) in the SABR group (p = 0.23). Five-year local recurrence-free survival (LRFS) was 44% after metastasectomy and 30% after SABR (p = 0.16). Median progression-free survival (PFS) was 15 months (CI: 3-26) in the metastasectomy group and 10 months (CI: 6-13) in the SABR group (p = 0.049). Local recurrence rate was 12.5/7.2% of patients/metastases respectively after metastasectomy and 38.3/31.1% after SABR (p < 0.001). Lower BED Gy10 was correlated with an increased likelihood of recurrence (p = 0.025). Clavien Dindo grade III-V complication rates were 2.5% after metastasectomy and 0% after SABR (p = 0.22). CONCLUSION: In this retrospective cohort study, pulmonary metastasectomy and SABR had comparable overall survival, local recurrence-free survival, and complication rates, despite patients in the SABR group having a significantly lower progression-free survival and local control rate. These data would support a randomized controlled trial comparing surgery and SABR in operable patients with radically resectable colorectal pulmonary metastases.

7.
Front Oncol ; 13: 1251132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829347

RESUMO

Purpose: A three-dimensional deep generative adversarial network (GAN) was used to predict dose distributions for locally advanced head and neck cancer radiotherapy. Given the labor- and time-intensive nature of manual planning target volume (PTV) and organ-at-risk (OAR) segmentation, we investigated whether dose distributions could be predicted without the need for fully segmented datasets. Materials and methods: GANs were trained/validated/tested using 320/30/35 previously segmented CT datasets and treatment plans. The following input combinations were used to train and test the models: CT-scan only (C); CT+PTVboost/elective (CP); CT+PTVs+OARs+body structure (CPOB); PTVs+OARs+body structure (POB); PTVs+body structure (PB). Mean absolute errors (MAEs) for the predicted dose distribution and mean doses to individual OARs (individual salivary glands, individual swallowing structures) were analyzed. Results: For the five models listed, MAEs were 7.3 Gy, 3.5 Gy, 3.4 Gy, 3.4 Gy, and 3.5 Gy, respectively, without significant differences among CP-CPOB, CP-POB, CP-PB, among CPOB-POB. Dose volume histograms showed that all four models that included PTV contours predicted dose distributions that had a high level of agreement with clinical treatment plans. The best model CPOB and the worst model PB (except model C) predicted mean dose to within ±3 Gy of the clinical dose, for 82.6%/88.6%/82.9% and 71.4%/67.1%/72.2% of all OARs, parotid glands (PG), and submandibular glands (SMG), respectively. The R2 values (0.17/0.96/0.97/0.95/0.95) of OAR mean doses for each model also indicated that except for model C, the predictions correlated highly with the clinical dose distributions. Interestingly model C could reasonably predict the dose in eight patients, but on average, it performed inadequately. Conclusion: We demonstrated the influence of the CT scan, and PTV and OAR contours on dose prediction. Model CP was not statistically different from model CPOB and represents the minimum data statistically required to adequately predict the clinical dose distribution in a group of patients.

8.
J Surg Oncol ; 128(7): 1114-1120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37477423

RESUMO

INTRODUCTION: Local control following stereotactic ablative radiotherapy (SABR) for patients with colorectal pulmonary metastases is reportedly lower than for metastases from other tumors. Such recurrences may still be amenable to salvage therapy. We describe our experience with salvage surgery in 17 patients. METHODS: Patients who underwent salvage metastasectomy for a local recurrence following SABR for colorectal pulmonary metastases were identified from the surgical institutional databases of three Dutch major referral hospitals. Kaplan-Meier survival analysis was performed to determine survival. RESULTS: Seventeen patients underwent 20 salvage resections for local recurrence of colorectal pulmonary metastases. All patients had a progressive lesion on consecutive CT scans, with local uptake on 18 fluorodeoxyglucose-positron emission tomography computed tomography (FDG-PET CT), and were discussed in a thoracic oncology tumor board. Median time to local recurrence following SABR was 20 months (interquartile range [IQR]: 13-29). Fourteen procedures were performed minimally invasively. Extensive adhesions were observed during three procedures. A Clavien-Dindo grade III-IV complication occurred after four resections (20%). The 90-day mortality was 0%. The estimated median overall survival and progression-free survival following salvage resection were 71 months (confidence intervals [CI]: 50-92) and 39 months (CI: 19-58), respectively. Salvage resections were significantly more extensive, compared to the potential resection assessed on pre-SABR imaging. CONCLUSIONS: Our experience with 20 salvage pulmonary metastasectomy procedures for local recurrences following SABR in colorectal cancer patients demonstrates that salvage resection is a feasible option with acceptable morbidity and good oncological outcome in a highly selected cohort.

9.
Cancers (Basel) ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174045

RESUMO

Healthy tissue-sparing effects of FLASH (≥40 Gy/s, ≥4-8 Gy/fraction) radiotherapy (RT) make it potentially useful for whole breast irradiation (WBI), since there is often a lot of normal tissue within the planning target volume (PTV). We investigated WBI plan quality and determined FLASH-dose for various machine settings using ultra-high dose rate (UHDR) proton transmission beams (TBs). While five-fraction WBI is commonplace, a potential FLASH-effect might facilitate shorter treatments, so hypothetical 2- and 1-fraction schedules were also analyzed. Using one tangential 250 MeV TB delivering 5 × 5.7 Gy, 2 × 9.74 Gy or 1 × 14.32 Gy, we evaluated: (1) spots with equal monitor units (MUs) in a uniform square grid with variable spacing; (2) spot MUs optimized with a minimum MU-threshold; and (3) splitting the optimized TB into two sub-beams: one delivering spots above an MU-threshold, i.e., at UHDRs; the other delivering the remaining spots necessary to improve plan quality. Scenarios 1-3 were planned for a test case, and scenario 3 was also planned for three other patients. Dose rates were calculated using the pencil beam scanning dose rate and the sliding-window dose rate. Various machine parameters were considered: minimum spot irradiation time (minST): 2 ms/1 ms/0.5 ms; maximum nozzle current (maxN): 200 nA/400 nA/800 nA; two gantry-current (GC) techniques: energy-layer and spot-based. For the test case (PTV = 819 cc) we found: (1) a 7 mm grid achieved the best balance between plan quality and FLASH-dose for equal-MU spots; (2) near the target boundary, lower-MU spots are necessary for homogeneity but decrease FLASH-dose; (3) the non-split beam achieved >95% FLASH for favorable (not clinically available) machine parameters (SB GC, low minST, high maxN), but <5% for clinically available settings (EB GC, minST = 2 ms, maxN = 200 nA); and (4) splitting gave better plan quality and higher FLASH-dose (~50%) for available settings. The clinical cases achieved ~50% (PTV = 1047 cc) or >95% (PTV = 477/677 cc) FLASH after splitting. A single UHDR-TB for WBI can achieve acceptable plan quality. Current machine parameters limit FLASH-dose, which can be partially overcome using beam-splitting. WBI FLASH-RT is technically feasible.

10.
Med Phys ; 50(11): 6881-6893, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37219823

RESUMO

BACKGROUND: Radiotherapy (RT) is involved in about 50% of all cancer patients, making it a very important treatment modality. The most common type of RT is external beam RT, which consists of delivering the radiation to the tumor from outside the body. One novel treatment delivery method is volumetric modulated arc therapy (VMAT), where the gantry continuously rotates around the patient during the radiation delivery. PURPOSE: Accurate tumor position monitoring during stereotactic body radiotherapy (SBRT) for lung tumors can help to ensure that the tumor is only irradiated when it is inside the planning target volume. This can maximize tumor control and reduce uncertainty margins, lowering organ-at-risk dose. Conventional tracking methods are prone to errors, or have a low tracking rate, especially for small tumors that are in close vicinity to bony structures. METHODS: We investigated patient-specific deep Siamese networks for real-time tumor tracking, during VMAT. Due to lack of ground truth tumor locations in the kilovoltage (kV) images, each patient-specific model was trained on synthetic data (DRRs), generated from the 4D planning CT scans, and evaluated on clinical data (x-rays). Since there are no annotated datasets with kV images, we evaluated the model on a 3D printed anthropomorphic phantom but also on six patients by computing the correlation coefficient with the breathing-related vertical displacement of the surface-mounted marker (RPM). For each patient/phantom, we used 80% of DRRs for training and 20% for validation. RESULTS: The proposed Siamese model outperformed the conventional benchmark template matching-based method (RTR): (1) when evaluating both methods on the 3D phantom, the Siamese model obtained a 0.57-0.79-mm mean absolute distance to the ground truth tumor locations, compared to 1.04-1.56 mm obtained by RTR; (2) on patient data, the Siamese-determined longitudinal tumor position had a correlation coefficient of 0.71-0.98 with the RPM, compared to 0.07-0.85 for RTR; (3) the Siamese model had a 100% tracking rate, compared to 62%-82% for RTR. CONCLUSIONS: Based on these results, we argue that Siamese-based real-time 2D markerless tumor tracking during radiation delivery is possible. Further investigation and development of 3D tracking is warranted.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Radiocirurgia/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Respiração , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
11.
Med Phys ; 50(10): 6421-6432, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37118976

RESUMO

BACKGROUND: Clinical data used to train deep learning models are often not clean data. They can contain imperfections in both the imaging data and the corresponding segmentations. PURPOSE: This study investigates the influence of data imperfections on the performance of deep learning models for parotid gland segmentation. This was done in a controlled manner by using synthesized data. The insights this study provides may be used to make deep learning models better and more reliable. METHODS: The data were synthesized by using the clinical segmentations, creating a pseudo ground-truth in the process. Three kinds of imperfections were simulated: incorrect segmentations, low image contrast, and artifacts in the imaging data. The severity of each imperfection was varied in five levels. Models resulting from training sets from each of the five levels were cross-evaluated with test sets from each of the five levels. RESULTS: Using synthesized data led to almost perfect parotid gland segmentation when no error was added. Lowering the quality of the parotid gland segmentations used for training substantially lowered the model performance. Additionally, lowering the image quality of the training data by decreasing the contrast or introducing artifacts made the resulting models more robust to data containing those respective kinds of data imperfection. CONCLUSION: This study demonstrated the importance of good-quality segmentations for deep learning training and it shows that using low-quality imaging data for training can enhance the robustness of the resulting models.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Radiografia , Tomografia Computadorizada por Raios X
12.
Semin Radiat Oncol ; 33(2): 159-171, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990633

RESUMO

Progress in biological cancer characterization, targeted systemic therapies and multimodality treatment strategies have shifted the goals of radiotherapy for spinal metastases from short-term palliation to long-term symptom control and prevention of compilations. This article gives an overview of the spine stereotactic body radiotherapy (SBRT) methodology and clinical results of SBRT in cancer patients with painful vertebral metastases, metastatic spinal cord compression, oligometastatic disease and in a reirradiation situation. Outcomes after dose-intensified SBRT are compared with results of conventional radiotherapy and patient selection criteria will be discussed. Though rates of severe toxicity after spinal SBRT are low, strategies to minimize the risk of vertebral compression fracture, radiation induced myelopathy, plexopathy and myositis are summarized, to optimize the use of SBRT in multidisciplinary management of vertebral metastases.


Assuntos
Fraturas por Compressão , Radiocirurgia , Reirradiação , Fraturas da Coluna Vertebral , Neoplasias da Coluna Vertebral , Humanos , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/secundário , Reirradiação/métodos
13.
Thorac Cancer ; 14(9): 840-847, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36802171

RESUMO

INTRODUCTION: Pre-invasive squamous lesions of the central airways can progress into invasive lung cancers. Identifying these high-risk patients could enable detection of invasive lung cancers at an early stage. In this study, we investigated the value of 18 F-fluorodeoxyglucose (18 F-FDG) positron emission tomography (PET) scans in predicting progression in patients with pre-invasive squamous endobronchial lesions. METHODS: In this retrospective study, patients with pre-invasive endobronchial lesions, who underwent an 18 F-FDG PET scan at the VU University Medical Center Amsterdam, between January 2000 and December 2016, were included. Autofluorescence bronchoscopy (AFB) was used for tissue sampling and was repeated every 3 months. The minimum and median follow-up was 3 and 46.5 months. Study endpoints were the occurrence of biopsy proven invasive carcinoma, time-to-progression and overall survival (OS). RESULTS: A total number of 40 of 225 patients met the inclusion criteria of which 17 (42.5%) patients had a positive baseline 18 F-FDG PET scan. A total of 13 of 17 (76.5%) developed invasive lung carcinoma during follow-up, with a median time to progression of 5.0 months (range, 3.0-25.0). In 23 (57.5%) patients with a negative 18 F-FDG PET scan at baseline, 6 (26%) developed lung cancer, with a median time to progression of 34.0 months (range, 14.0-42.0 months, p < 0.002). With a median OS of 56.0 months (range, 9.0-60.0 months) versus 49.0 months (range, 6.0-60.0 months) (p = 0.876) for the 18 F-FDG PET positive and negative groups, respectively. CONCLUSIONS: Patients with pre-invasive endobronchial squamous lesions and a positive baseline 18 F-FDG PET scan were at high-risk for developing lung carcinoma, highlighting that this patient group requires early radical treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Fluordesoxiglucose F18 , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia
14.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428593

RESUMO

Depending on the clinical situation, different combinations of lymph node (LN) levels define the elective LN target volume in head-and-neck cancer (HNC) radiotherapy. The accurate auto-contouring of individual LN levels could reduce the burden and variability of manual segmentation and be used regardless of the primary tumor location. We evaluated three deep learning approaches for the segmenting individual LN levels I−V, which were manually contoured on CT scans from 70 HNC patients. The networks were trained and evaluated using five-fold cross-validation and ensemble learning for 60 patients with (1) 3D patch-based UNets, (2) multi-view (MV) voxel classification networks and (3) sequential UNet+MV. The performances were evaluated using Dice similarity coefficients (DSC) for automated and manual segmentations for individual levels, and the planning target volumes were extrapolated from the combined levels I−V and II−IV, both for the cross-validation and for an independent test set of 10 patients. The median DSC were 0.80, 0.66 and 0.82 for UNet, MV and UNet+MV, respectively. Overall, UNet+MV significantly (p < 0.0001) outperformed other arrangements and yielded DSC = 0.87, 0.85, 0.86, 0.82, 0.77, 0.77 for the combined and individual level I−V structures, respectively. Both PTVs were also significantly (p < 0.0001) more accurate with UNet+MV, with DSC = 0.91 and 0.90, respectively. The accurate segmentation of individual LN levels I−V can be achieved using an ensemble of UNets. UNet+MV can further refine this result.

15.
Biomolecules ; 12(10)2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36291585

RESUMO

Radiotherapy (RT) is one of the primary treatment modalities for cancer patients. The clinical use of RT requires a balance to be struck between tumor effect and the risk of toxicity. Sparing normal tissue is the cornerstone of reducing toxicity. Advances in physical targeting and dose-shaping technology have helped to achieve this. FLASH RT is a promising, novel treatment technique that seeks to exploit a potential normal tissue-sparing effect of ultra-high dose rate irradiation. A significant body of in vitro and in vivo data has highlighted a decrease in acute and late radiation toxicities, while preserving the radiation effect in tumor cells. The underlying biological mechanisms of FLASH RT, however, remain unclear. Three main mechanisms have been hypothesized to account for this differential FLASH RT effect between the tumor and healthy tissue: the oxygen depletion, the DNA damage, and the immune-mediated hypothesis. These hypotheses and molecular mechanisms have been evaluated both in vitro and in vivo. Furthermore, the effect of ultra-high dose rate radiation with extremely short delivery times on the dynamic tumor microenvironment involving circulating blood cells and immune cells in humans is essentially unknown. Therefore, while there is great interest in FLASH RT as a means of targeting tumors with the promise of an increased therapeutic ratio, evidence of a generalized FLASH effect in humans and data to show that FLASH in humans is safe and at least effective against tumors as standard photon RT is currently lacking. FLASH RT needs further preclinical investigation and well-designed in-human studies before it can be introduced into clinical practice.


Assuntos
Neoplasias , Lesões por Radiação , Humanos , Dosagem Radioterapêutica , Neoplasias/radioterapia , Oxigênio , Radioterapia/métodos , Microambiente Tumoral
16.
J Clin Med ; 11(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142997

RESUMO

OBJECTIVES: Healthcare is required to be effectively organised to ensure that growing, aging and medically more complex populations have timely access to high-quality, affordable care. Cardiac surgery is no exception to this, especially due to the competition for and demand on hospital resources, such as operating rooms and intensive care capacity. This is challenged more since the COVID-19 pandemic led to postponed care and prolonged waiting lists. In other sectors, Quality Improvement Methodologies (QIM) derived from the manufacturing industry have proven effective in enabling more efficient utilisation of existing capacity and resources and in improving the quality of care. We performed a systematic review to evaluate the ability of such QIM to improve care in cardiac surgery. METHODS: A literature search was performed in PubMed, Embase, Clarivate Analytics/Web of Science Core Collection and Wiley/the Cochrane Library according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis methodology. RESULTS: Ten articles were identified. The following QIM were used: Lean, Toyota Production System, Six Sigma, Lean Six Sigma, Root Cause Analysis, Kaizen and Plan-Do-Study-Act. All reported one or more relevant improvements in patient-related (e.g., infection rates, ventilation time, mortality, adverse events, glycaemic control) and process-related outcomes (e.g., shorter waiting times, shorter transfer time and productivity). Elements to enhance the success included: multidisciplinary team engagement, a patient-oriented, data-driven approach, a sense of urgency and a focus on sustainability. CONCLUSIONS: In all ten papers describing the application of QIM initiatives to cardiac surgery, positive results, of varying magnitude, were reported. While the consistency of the available data is encouraging, the limited quantity and heterogenous quality of the evidence base highlights that more rigorous evaluation, including how best to employ manufacturing industry-derived QIM in cardiac surgery is warranted.

17.
Cancers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740515

RESUMO

Knowledge-based planning solutions have brought significant improvements in treatment planning. However, the performance of a proton-specific knowledge-based planning model in creating knowledge-based plans (KBPs) with beam angles differing from those used to train the model remains unexplored. We used a previously validated RapidPlanPT model and scripting to create nine KBPs, one with default and eight with altered beam angles, for 10 recent oropharynx cancer patients. The altered-angle plans were compared against the default-angle ones in terms of grade 2 dysphagia and xerostomia normal tissue complication probability (NTCP), mean doses of several organs at risk, and dose homogeneity index (HI). As KBP could be suboptimal, a proof of principle automatic iterative optimizer (AIO) was added with the aim of reducing the plan NTCP. There were no statistically significant differences in NTCP or HI between default- and altered-angle KBPs, and the altered-angle plans showed a <1% reduction in NTCP. AIO was able to reduce the sum of grade 2 NTCPs in 66/90 cases with mean a reduction of 3.5 ± 1.8%. While the altered-angle plans saw greater benefit from AIO, both default- and altered-angle plans could be improved, indicating that the KBP model alone was not completely optimal to achieve the lowest NTCP. Overall, the data showed that the model was robust to the various beam arrangements within the range described in this analysis.

18.
Adv Radiat Oncol ; 7(4): 100954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634574

RESUMO

Purpose: Research suggests that in addition to the dose-rate, a dose threshold is also important for the reduction in normal tissue toxicity with similar tumor control after ultrahigh dose-rate radiation therapy (UHDR-RT). In this analysis we aimed to identify factors that might limit the ability to achieve this "FLASH"-effect in a scenario attractive for UHDR-RT (high fractional beam dose, small target, few organs-at-risk): single-fraction 34 Gy lung stereotactic body radiation therapy. Methods and Materials: Clinical volumetric-modulated arc therapy (VMAT) plans, intensity modulated proton therapy (IMPT) plans and transmission beam (TB) plans were compared for 6 small and 1 large lung lesion. The TB-plan dose-rate was calculated using 4 methods and the FLASH-percentage (percentage of dose delivered at dose-rates ≥40/100 Gy/s and ≥4/8 Gy) was determined for various variables: a minimum spot time (minST) of 0.5/2 ms, maximum nozzle current (maxN) of 200/40 0nA, and 2 gantry current (GC) techniques (energy-layer based, spot-based [SB]). Results: Based on absolute doses 5-beam TB and VMAT-plans are similar, but TB-plans have higher rib, skin, and ipsilateral lung dose than IMPT. Dose-rate calculation methods not considering scanning achieve FLASH-percentages between ∼30% to 80%, while methods considering scanning often achieve <30%. FLASH-percentages increase for lower minST/higher maxN and when using SB GC instead of energy-layer based GC, often approaching the percentage of dose exceeding the dose-threshold. For the small lesions average beam irradiation times (including scanning) varied between 0.06 to 0.31 seconds and total irradiation times between 0.28 to 1.57 seconds, for the large lesion beam times were between 0.16 to 1.47 seconds with total irradiation times of 1.09 to 5.89 seconds. Conclusions: In a theoretically advantageous scenario for FLASH we found that TB-plan dosimetry was similar to that of VMAT, but inferior to that of IMPT, and that decreasing minST or using SB GC increase the estimated amount of FLASH. For the appropriate machine/delivery parameters high enough dose-rates can be achieved regardless of calculation method, meaning that a possible FLASH dose-threshold will likely be the primary limiting factor.

20.
Interact Cardiovasc Thorac Surg ; 34(4): 566-575, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34734237

RESUMO

OBJECTIVES: Chemoradiotherapy (CRT) has been the backbone of guideline-recommended treatment for Stage IIIA non-small cell lung cancer (NSCLC). However, in selected operable patients with a resectable tumour, good results have been achieved with trimodality treatment (TT). The objective of this bi-institutional analysis of outcomes in patients treated for Stage IIIA NSCLC was to identify particular factors supporting the role of surgery after CRT. METHODS: In a 2-centre retrospective cohort study, patients with Stage III NSCLC (seventh edition TNM) were identified and those patients with Stage IIIA who were treated with CRT or TT between January 2007 and December 2013 were selected. Patient characteristics as well as tumour parameters were evaluated in relation to outcome and whether or not these variables were predictive for the influence of treatment (TT or CRT) on outcome [overall survival (OS) or progression-free survival (PFS)]. Estimation of treatment effect on PFS and OS was performed using propensity-weighted cox regression analysis based on inverse probability weighting. RESULTS: From a database of 725 Stage III NSCLC patients, 257 Stage IIIA NSCLC patients, treated with curative intent, were analysed; 186 (72%) with cIIIA-N2 and 71 (28%) with cT3N1/cT4N0 disease. One hundred and ninety-six (76.3%) patients were treated by CRT alone (high-dose radiation with daily low-dose cisplatin) and 61 (23.7%) by TT. The unweighted data showed that TT resulted in better PFS and OS. After weighting for factors predictive of treatment assignment, patients with a large gross tumour volume (>120 cc) had better PFS when treated with TT, and patients with an adenocarcinoma treated with TT had better OS, regardless of tumour volume. CONCLUSIONS: Patients with Stage IIIA NSCLC and large tumour volume, as well as patients with adenocarcinoma, who were selected for TT, had favourable outcome compared to patients receiving CRT. This information can be used to assist multidisciplinary team decision-making and for stratifying patients in studies comparing TT and definitive CRT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quimiorradioterapia , Humanos , Estadiamento de Neoplasias , Estudos Retrospectivos , Resultado do Tratamento , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...