Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 23(1): 63, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891482

RESUMO

The transition from notochord to vertebral column is a crucial milestone in chordate evolution and in prenatal development of all vertebrates. As ossification of the vertebral bodies proceeds, involutions of residual notochord cells into the intervertebral discs form the nuclei pulposi, shock-absorbing structures that confer flexibility to the spine. Numerous studies have outlined the developmental and evolutionary relationship between notochord and nuclei pulposi. However, the knowledge of the similarities and differences in the genetic repertoires of these two structures remains limited, also because comparative studies of notochord and nuclei pulposi across chordates are complicated by the gene/genome duplication events that led to extant vertebrates. Here we show the results of a pilot study aimed at bridging the information on these two structures. We have followed in different vertebrates the evolutionary trajectory of notochord genes identified in the invertebrate chordate Ciona, and we have evaluated the extent of conservation of their expression in notochord cells. Our results have uncovered evolutionarily conserved markers of both notochord development and aging/degeneration of the nuclei pulposi.


Assuntos
Cordados , Núcleo Pulposo , Animais , Notocorda/metabolismo , Projetos Piloto , Expressão Gênica
2.
Eur Spine J ; 32(3): 848-858, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719517

RESUMO

PURPOSE: Aging is a risk factor for several debilitating conditions including those related to chronic back pain and intervertebral disc degeneration, both of which have no cure. Mouse models are useful tools for studying disc degeneration and chronic back pain in a tightly controlled and clinically relevant aging environment. Moreover, mice offer the advantage of carrying out longitudinal studies to understand the etiology and progression of disc pathology induced by genetic or surgical strategies. Previously, age-related behavioral trends of discomfort and enhanced nociception in mice were reported; however, whether these measures are mediated by structural and pathological changes in the disc is unknown. METHODS: The goal of the present observational study was to identify behavioral correlates of age-related degenerative changes in the disc. Towards this, we collected radiographs from 150 mice (77 females) between three and 23 months of age and measured the disc height index for each level of lumbar disc. Behavioral measures were collected on several of these mice which included rearing and distance travelled in an open field test; time spent in rearing, reaching, immobile, and self-suspended in the tail suspension test; bilateral hind paw licking in response to cold allodynia using acetone; and unilateral hind paw licking in response to heat hyperalgesia using capsaicin. RESULTS: Results show that the lower lumbar discs lose height with age and these changes are independent of body composition measures including body weight, bone mineral density, fat mass, lean weight mass, percent fat mass, and percent lean mass. Disc height positively correlates with rearing and mobility in the open field test, immobility in the tail suspension test, and thermal hyperalgesia. Disc height negatively correlates with cold allodynia and rearing in the tail suspension test. Furthermore, mediation analysis shows that the lumbosacral disc significantly mediates the effect of age on rearing in the open field test, but not cold allodynia, suggesting this behavior is a useful measure of age-related axial discomfort due to disc degeneration. CONCLUSION: In summary, the findings from the current study show that disc height are associated with measures of axial discomfort and nociception in mice.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Feminino , Camundongos , Animais , Degeneração do Disco Intervertebral/patologia , Hiperalgesia/etiologia , Dor Lombar/patologia , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Região Lombossacral/patologia
3.
Bone Res ; 9(1): 45, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671034

RESUMO

Osteoclasts are bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathological bone erosion. Macrophage colony stimulating factor (M-CSF) is abundant in rheumatoid arthritis (RA). However, the role of M-CSF in arthritic bone erosion is not completely understood. Here, we show that M-CSF can promote osteoclastogenesis by triggering the proteolysis of c-FMS, a receptor for M-CSF, leading to the generation of FMS intracellular domain (FICD) fragments. Increased levels of FICD fragments positively regulated osteoclastogenesis but had no effect on inflammatory responses. Moreover, myeloid cell-specific FICD expression in mice resulted in significantly increased osteoclast-mediated bone resorption in an inflammatory arthritis model. The FICD formed a complex with DAP5, and the FICD/DAP5 axis promoted osteoclast differentiation by activating the MNK1/2/EIF4E pathway and enhancing NFATc1 protein expression. Moreover, targeting the MNK1/2 pathway diminished arthritic bone erosion. These results identified a novel role of c-FMS proteolysis in osteoclastogenesis and the pathogenesis of arthritic bone erosion.

4.
JOR Spine ; 4(2): e1164, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34337338

RESUMO

Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD. The new scoring system analyzes 14 key histopathological features from nucleus pulposus (NP), annulus fibrosus (AF), endplate (EP), and AF/NP/EP interface regions. Each feature is categorized and scored; hence, the weight for quantifying the disc histopathology is equally distributed and not driven by only a few features. We tested the new histopathological scoring criteria using images of lumbar and coccygeal discs from different IDD models of both sexes, including genetic, needle-punctured, static compressive models, and natural aging mice spanning neonatal to old age stages. Moreover, disc sections from common histological preparation techniques and stains including H&E, SafraninO/Fast green, and FAST were analyzed to enable better cross-study comparisons. Fleiss's multi-rater agreement test shows significant agreement by both experienced and novice multiple raters for all 14 features on several mouse models and sections prepared using various histological techniques. The sensitivity and specificity of the new scoring system was validated using artificial intelligence and supervised and unsupervised machine learning algorithms, including artificial neural networks, k-means clustering, and principal component analysis. Finally, we applied the new scoring system on established disc degeneration models and demonstrated high sensitivity and specificity of histopathological scoring changes. Overall, the new histopathological scoring system offers the ability to quantify histological changes in mouse models of disc degeneration and regeneration with high sensitivity and specificity.

5.
JOR Spine ; 4(2): e1165, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34337339

RESUMO

This perspective summarizes the genesis, development, and potential future directions of the multispecies JOR Spine histopathology series.

6.
JOR Spine ; 4(2): e1167, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34337340

RESUMO

BACKGROUND: Histopathological analysis of intervertebral disc (IVD) tissues is a critical domain of back pain research. Identification, description, and classification of attributes that distinguish abnormal tissues form a basis for probing disease mechanisms and conceiving novel therapies. Unfortunately, lack of standardized methods and nomenclature can limit comparisons of results across studies and prevent organizing information into a clear representation of the hierarchical, spatial, and temporal patterns of IVD degeneration. Thus, the following Orthopaedic Research Society (ORS) Spine Section Initiative aimed to develop a standardized histopathology scoring scheme for human IVD degeneration. METHODS: Guided by a working group of experts, this prospective process entailed a series of stages that consisted of reviewing and assessing past grading schemes, surveying IVD researchers globally on current practice and recommendations for a new grading system, utilizing expert opinion a taxonomy of histological grading was developed, and validation performed. RESULTS: A standardized taxonomy was developed, which showed excellent intra-rater reliability for scoring nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous end plate (CEP) regions (interclass correlation [ICC] > .89). The ability to reliably detect subtle changes varied by IVD region, being poorest in the NP (ICC: .89-.95) where changes at the cellular level were important, vs the AF (ICC: .93-.98), CEP (ICC: .97-.98), and boney end plate (ICC: .96-.99) where matrix and structural changes varied more dramatically with degeneration. CONCLUSIONS: The proposed grading system incorporates more comprehensive descriptions of degenerative features for all the IVD sub-tissues than prior criteria. While there was excellent reliability, our results reinforce the need for improved training, particularly for novice raters. Future evaluation of the proposed system in real-world settings (eg, at the microscope) will be needed to further refine criteria and more fully evaluate utility. This improved taxonomy could aid in the understanding of IVD degeneration phenotypes and their association with back pain.

7.
JOR Spine ; 3(3): e1108, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33015579

RESUMO

Intervertebral disc degeneration is the most significant, and least understood, cause of chronic back pain, affecting almost one in seven individuals at some point of time. Each intervertebral disc has three components; central nucleus pulposus (NP), concentric layers of annulus fibrosus (AF), and a pair of end plate (EP) that connects the disc to the vertebral bodies. Understanding the molecular and cellular basis of intervertebral disc growth, health, and aging will generate significant information for developing therapeutic approaches. Rapid and efficient preparations of homogeneous and pure cells are crucial for meaningful and rigorous downstream analysis at the cellular, molecular, and biochemical level. Cross-sample contamination may influence the interpretation of the results. In addition to altering gene expression, slow or delayed isolation procedures will also cause the degradation of cells and biomolecules that create a bias in the outcomes of the study. The mouse model system is extensively used to understand the intervertebral disc biology. Here we describe two protocols: (a) for efficient isolation of pure NP, AF, and EP cells from mouse lumbar intervertebral disc. We validated the purity of the NP and AF cells using Shh Cre/+ ; R26 mT/mG/+ dual-fluorescent reporter mice where all NP cells are GPF+ve, and by the sensitive approach of qPCR analysis using TaqMan probes for Shh, and Brachyury as NP-specific markers, Tenomodulin as AF-specific marker, and Osteocalcin as bone-specific marker. (b) For isolation of high-quality intact RNA with RIN of 9.3 to 10 from disc cells. These methods will be useful for the rigorous analysis of NP and AF cells, and improve our understanding of intervertebral disc biology.

8.
JOR Spine ; 3(3): e1127, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33015583
9.
JOR Spine ; 3(4): e1124, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33392459

RESUMO

Aging is a major risk factor for numerous painful, inflammatory, and degenerative diseases including disc degeneration. A better understanding of how the somatosensory nervous system adapts to the changing physiology of the aging body will be of great significance for our expanding aging population. Previously, we reported that chronological aging of mouse lumbar discs is pathological and associated with behavioral changes related to pain. It is established that with age and degeneration the lumbar discs become inflammatory and innervated. Here we analyze the aging lumbar dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) in mice between 3 and 24 months of age for age-related somatosensory adaptations. We observe that as mice age there are signs of peripheral sensitization, and response to inflammation at the molecular and cellular level in the DRGs. From 12 months onwards the mRNA expression of vasodilator and neurotransmitter, Calca (CGRP); stress (and survival) marker, Atf3; and neurotrophic factor, Bdnf, increases linearly with age in the DRGs. Further, while the mRNA expression of neuropeptide, Tac1, precursor of Substance P, did not change at the transcriptional level, TAC1 protein expression increased in 24-month-old DRGs. Additionally, elevated expression of NFκB subunits, Nfkb1 and Rela, but not inflammatory mediators, Tnf, Il6, Il1b, or Cox2, in the DRGs suggest peripheral nerves are responding to inflammation, but do not increase the expression of inflammatory mediators at the transcriptional level. These results identify a progressive, age-related shift in the molecular profile of the mouse somatosensory nervous system and implicates nociceptive sensitization and inflammatory response.

10.
JOR Spine ; 3(4): e1134, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33392462

RESUMO

The fifth biennial ORS PSRS International Spine Research Symposium took place from November 3 to 7, 2019, at Skytop Lodge in northeastern Pennsylvania. Organized jointly by the Orthopaedic Research Society and the Philadelphia Spine Research Society, the symposium attracted more than 180 participants from 10 different countries to share the latest advances in basic and preclinical spine research. Following the symposium, participants were invited to submit full-length manuscripts to this special issue of JOR Spine.

11.
J Cell Physiol ; 235(1): 128-140, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31187500

RESUMO

Intervertebral disc degeneration and associated back pain are relatively common but sparsely understood conditions, affecting over 70% of the population during some point of life. Disc degeneration is often associated with a loss of nucleus pulposus (NP) cells. Genetic mouse models offer convenient avenues to understand the cellular and molecular regulation of the disc during its formation, growth, maintenance, and aging. However, due to the lack of inducible driver lines to precisely target NP cells in the postnatal mouse disc, progress in this area of research has been moderate. NP cells are known to express cytokeratin 19 (Krt19), and tamoxifen (Tam)-inducible Krt19CreERT allele is available. The current study describes the characterization of Krt19CreERT allele to specifically and efficiently target NP cells in neonatal, skeletally mature, middle-aged, and aged mice using two independent fluorescent reporter lines. The efficiency of recombination at all ages was validated by immunostaining for KRT19. Results show that following Tam induction, Krt19CreERT specifically drives recombination of NP cells in the spine of neonatal and aged mice, while no recombination was detected in the surrounding tissues. Knee joints from skeletally mature Tam-treated Krt19CreERT/+ ; R26tdTOM mouse show the absence of recombination in all tissues and cells of the knee joint. Thus, this study provides evidence for the use of Krt19CreERT allele for genetic characterization of NP cells at different stages of the mouse life.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Disco Intervertebral/metabolismo , Queratina-19/metabolismo , Envelhecimento , Alelos , Animais , Animais Recém-Nascidos , Genótipo , Queratina-19/genética , Camundongos , Camundongos Transgênicos , Mutação
12.
Aging Cell ; 18(5): e13006, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290579

RESUMO

Aging is a major risk factor of intervertebral disc degeneration and a leading cause of back pain. Pathological changes associated with disc degeneration include the absence of large, vacuolated and reticular-shaped nucleus pulposus cells, and appearance of smaller cells nested in lacunae. These small nested cells are conventionally described as chondrocyte-like cells; however, their origin in the intervertebral disc is unknown. Here, using a genetic mouse model and a fate mapping strategy, we have found that the chondrocyte-like cells in degenerating intervertebral discs are, in fact, nucleus pulposus cells. With aging, the nucleus pulposus cells fuse their cell membranes to form the nested lacunae. Next, we characterized the expression of sonic hedgehog (SHH), crucial for the maintenance of nucleus pulposus cells, and found that as intervertebral discs age and degenerate, expression of SHH and its target Brachyury is gradually lost. The results indicate that the chondrocyte-like phenotype represents a terminal stage of differentiation preceding loss of nucleus pulposus cells and disc collapse.


Assuntos
Senescência Celular , Condrócitos/citologia , Disco Intervertebral/citologia , Núcleo Pulposo/citologia , Animais , Diferenciação Celular , Humanos , Fenótipo
13.
Wiley Interdiscip Rev Dev Biol ; 8(4): e343, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977275

RESUMO

Intervertebral discs are cartilaginous joints present between vertebrae. The centers of the intervertebral discs consist of a gelatinous nucleus pulposus derived from the embryonic notochord. With age or injury, intervertebral discs may degenerate, causing neurological symptoms including back pain, which affects millions of people worldwide. Back pain is a multifactorial disorder, and disc degeneration is one of the primary contributing factors. Recent studies in mice have identified the key molecules involved in the formation of intervertebral discs. Several of these key molecules including sonic hedgehog and Brachyury are not only expressed by notochord during development, but are also expressed by neonatal mouse nucleus pulposus cells, and are crucial for postnatal disc maintenance. These findings suggest that intrinsic signals in each disc may maintain the nucleus pulposus microenvironment. However, since expression of these developmental signals declines with age and degeneration, disc degeneration may be related to the loss of these intrinsic signals. In addition, findings from mouse and other mammalian models have identified similarities between the patterning capabilities of the embryonic notochord and young nucleus pulposus cells, suggesting that mouse is a suitable model system to understand disc development and aging. Future research aimed at understanding the upstream regulators of these developmental signals and the modes by which they regulate disc growth and maintenance will likely provide mechanistic insights into disc growth and aging. Further, such findings will likely provide insights relevant to the development of effective therapies for treatment of back pain and reversing the disc degenerative process. This article is categorized under: Birth Defects > Organ Anomalies Vertebrate Organogenesis > Musculoskeletal and Vascular Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging.


Assuntos
Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Animais , Proteínas Fetais/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Dor Lombar/metabolismo , Dor Lombar/patologia , Proteínas com Domínio T/metabolismo
14.
Bone ; 123: 246-259, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936040

RESUMO

With the increased burden of low back pain (LBP) in our globally aging population there is a need to develop preclinical models of LBP that capture clinically relevant features of physiological aging, degeneration, and disability. Here we assess the validity of using a mouse model system for age-related LBP by characterizing aging mice for features of intervertebral disc (IVD) degeneration, molecular markers of peripheral sensitization, and behavioral signs of pain. Compared to three-month-old and one-year-old mice, two-year-old mice show features typical of IVD degeneration including loss of disc height, bulging, innervation and vascularization in the caudal lumbar IVDs. Aging is also associated with the loss of whole-body bone mineral density in both male and female mice, but not associated with percent lean mass or body fat. Additionally, two-year-old mice have an accumulation of TRPA1 channels and sodium channels NaV1.8 and NaV1.9 in the L4 and L5 lumbar dorsal root ganglia consistent with changes in nociceptive signaling. Lastly, the effect of age, sex, and weight on mobility, axial stretching and radiating pain measures was assessed in male and female mice ranging from two months to two years in a general linear model. The model revealed that regardless of sex or weight, increased age was a predictor of greater reluctance to perform axial stretching and sensitivity to cold, but not heat in mice.


Assuntos
Envelhecimento/fisiologia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/fisiopatologia , Dor Lombar/patologia , Dor Lombar/fisiopatologia , Animais , Feminino , Imunofluorescência , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Disco Intervertebral , Degeneração do Disco Intervertebral/metabolismo , Dor Lombar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso/fisiologia , Redução de Peso/fisiologia
15.
Biol Open ; 7(7)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29784673

RESUMO

In humans, the sacrum forms an important component of the pelvic arch, and it transfers the weight of the body to the lower limbs. The sacrum is formed by collapse of the intervertebral discs (IVDs) between the five sacral vertebrae during childhood, and their fusion to form a single bone. We show that collapse of the sacral discs in the mouse is associated with the down-regulation of sonic hedgehog (SHH) signaling in the nucleus pulposus (NP) of the disc, and many aspects of this phenotype can be reversed by experimental postnatal activation of hedgehog (HH) signaling. We have previously shown that SHH signaling is essential for the normal postnatal growth and differentiation of intervertebral discs elsewhere in the spine, and that loss of SHH signaling leads to pathological disc degeneration, a very common disorder of aging. Thus, loss of SHH is pathological in one region of the spine but part of normal development in another.

16.
Curr Mol Biol Rep ; 4(4): 173-179, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30687592

RESUMO

A PURPOSE OF REVIEW: The intervertebral discs (IVD) are an essential component of the spine. Degeneration of the discs, commonly due to age or injury, is a leading cause of chronic lower back pain. Despite its high prevalence, there is no effective treatment for disc disease due to limited understanding of disc at the cellular and molecular level. B RECENT FINDINGS: Recent research has demonstrated the importance of the intracellular developmental pathway sonic hedgehog (Shh) during the formation and postnatal maintenance of the IVD. Recent studies corroborate that the down-regulation of SHH expression is associated with pathological changes in the IVDs and demonstrate the reactivation of the hedgehog pathway as a promising avenue for rescuing health disc structure and function. C SUMMARY: Understanding the role of developmental signaling pathways that regulate disc formation and maintenance may help develop strategies to recapitulate the same mechanism for disc treatment and hence improve the quality and longevity of patient lives.

18.
JOR Spine ; 1(3): e1030, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30687811

RESUMO

This paper is a concise review aiming to assemble the most relevant topics presented by the authors at ORS-Philadelphia Spine Research Society Fourth International Spine Research Symposium. It centers on the latest advances in disc development, its main structural entities, and the populating cells, with emphasis on the advances in pivotal molecular pathways responsible for forming the intervertebral discs (IVD). The objective of finding and emphasizing pathways and mechanisms that function to control tissue formation is to identify and to explore modifications occurring during normal aging, disease, and tissue repair. Thus, to comprehend that the cellular and molecular basis of tissue degeneration are crucial in the study of the dynamic interplay that includes cell-cell communication, gene regulation, and growth factors required to form a healthy and functional tissue during normal development.

19.
J Orthop Res ; 34(4): 641-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26447744

RESUMO

The structure and composition of the native enthesis is not recapitulated following tendon-to-bone repair. Indian Hedgehog (IHH) signaling has recently been shown to be important in enthesis development in a mouse model but no studies have evaluated IHH signaling in a healing model. Fourteen adult male rats underwent ACL reconstruction using a flexor tendon graft. Rats were assigned to two groups based on whether or not they received 0N or 10N of pre-tension of the graft. Specimens were evaluated at 3 and 6 weeks post-operatively using immunohistochemistry for three different protein markers of IHH signaling. Quantitative analysis of staining area and intensity using custom software demonstrated that IHH signaling was active in interface tissue formed at the healing tendon-bone interface. We also found increased staining area and intensity of IHH signaling proteins at 3 weeks in animals that received a pre-tensioned tendon graft. No significant differences were seen between the 3-week and 6-week time points. Our data suggests that the IHH signaling pathway is active during the tendon-bone healing process and appears to be mechanosensitive, as pre-tensioning of the graft at the time of surgery resulted in increased IHH signaling at three weeks.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Proteínas Hedgehog/metabolismo , Tendões/transplante , Animais , Masculino , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Estresse Mecânico , Cicatrização
20.
Nature ; 526(7571): 112-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26367794

RESUMO

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.


Assuntos
Densidade Óssea/genética , Fraturas Ósseas/genética , Genoma Humano/genética , Proteínas de Homeodomínio/genética , Animais , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Europa (Continente)/etnologia , Exoma/genética , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genômica , Genótipo , Humanos , Camundongos , Análise de Sequência de DNA , População Branca/genética , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...