Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Oncol ; 62(10): 1208-1214, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37682727

RESUMO

BACKGROUND: Cone beam CT (CBCT) based online adaptive radiotherapy (oART) is a new development in radiotherapy. With oART, the requirements for planning target volume (PTV) margins differ from standard therapy because motion occurs during a session. In this study, we aim to evaluate a margin reduction for locally advanced prostate patients treated with oART. MATERIAL AND METHODS: Intrafraction motion of the elective pelvic lymph nodes was evaluated by two radiation therapists (RTTs) for 150 fractions from 10 prostate patients treated with oART. PTV margins of 3, 4 and 5 mm where added to these lymph nodes for all patients. The seven first patients were treated with 5 mm PTV margin, while the last three patients were treated with 4 mm margin. After treatment, the RTTs reviewed the verification CBCTs and evaluated whether the various PTV margins would have covered the adapted clinical target volume, scoring each fraction as approved, inconclusive or rejected. Couch shifts corresponding to the rigid prostate match between the CBCTs were analyzed with respect to the RTT evaluation. RESULTS: The RTTs approved a 4 mm margin in 95% of the fractions, while 2% of the fractions were rejected. For a 3 mm margin, 57% of the fractions were approved, while 5% were rejected. The scoring from the two RTTs was consistent; e.g., for 3 mm, one RTT approved 58% of the fractions, while the other approved 55%. If the couch was moved less than 2 mm in any direction, 70% of the fractions were approved for a 3 mm margin, compared to 32% for shifts greater than 2 mm. CONCLUSION: It is safe to reduce the PTV margin from 5 to 4 mm for the elective pelvic lymph nodes for prostate patients treated with oART. Further margin reductions can be motivated for patients presenting little intrafraction motion.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Masculino , Humanos , Radioterapia Guiada por Imagem/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Próstata/patologia , Linfonodos/patologia , Tomografia Computadorizada de Feixe Cônico/métodos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica
2.
J Appl Clin Med Phys ; 24(9): e14014, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37161820

RESUMO

INTRODUCTION: Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia. METHODS: A combined RBE and OER weighted dose (ROWD) calculation method was implemented in a FLUKA Monte Carlo (MC) based treatment planning tool. The method is based on the linear quadratic model, with α and ß parameters as a function of the OER, and therefore a function of the linear energy transfer (LET) and partial oxygen pressure (pO2 ). Proton therapy plans for two head and neck cancer (HNC) patients were optimized with pO2 estimated from [18 F]-EF5 positron emission tomography (PET) images. For the ROWD calculations, an RBE of 1.1 (RBE1.1,OER ) and two variable RBE models, Rørvik (ROR) and McNamara (MCN), were used, alongside a reference plan without incorporation of OER (RBE1.1 ). RESULTS: For the HNC patients, treatment plans in line with the prescription dose and with acceptable target ROWD could be generated with the established tool. The physical dose was the main factor modulated in the ROWD. The impact of incorporating OER during optimization of HNC patients was demonstrated by the substantial difference found between ROWD and physical dose in the hypoxic tumor region. The largest physical dose differences between the ROWD optimized plans and the reference plan was 12.2 Gy. CONCLUSION: The FLUKA MC based tool was able to optimize proton treatment plans taking the tumor pO2 distribution from hypoxia PET images into account. Independent of RBE-model, both elevated LET and physical dose were found in the hypoxic regions, which shows the potential to increase the tumor control compared to a conventional optimization approach.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Eficiência Biológica Relativa , Oxigênio , Neoplasias de Cabeça e Pescoço/radioterapia , Tomografia por Emissão de Pósitrons , Hipóxia/etiologia , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Biomed Phys Eng Express ; 8(6)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36260973

RESUMO

In proton therapy, a constant relative biological effectiveness (RBE) factor of 1.1 is applied although the RBE has been shown to depend on factors including the Linear Energy Transfer (LET). The biological effectiveness of radiotherapy has also been shown to depend on the level of oxygenation, quantified by the oxygen enhancement ratio (OER). To estimate the biological effectiveness across different levels of oxygenation the RBE-OER-weighted dose (ROWD) can be used. To investigate the consistency between different approaches to estimate ROWD, we implemented and compared OER models in a Monte Carlo (MC) simulation tool. Five OER models were explored: Wenzl and Wilkens 2011 (WEN), Tinganelliet al2015 (TIN), Strigariet al2018 (STR), Dahleet al2020 (DAH) and Meinet al2021 (MEI). OER calculations were combined with a proton RBE model and the microdosimetric kinetic model for ROWD calculations. ROWD and OER were studied for a water phantom scenario and a head and neck cancer case using hypoxia PET data for the OER calculation. The OER and ROWD estimates from the WEN, MEI and DAH showed good agreement while STR and TIN gave higher OER values and lower ROWD. The WEN, STR and DAH showed some degree of OER-LET dependency while this was negligible for the MEI and TIN models. The ROWD for all implemented models is reduced in hypoxic regions with an OER of 1.0-2.1 in the target volume. While some variations between the models were observed, all models display a large difference in the estimated dose from hypoxic and normoxic regions. This shows the potential to increase the dose or LET in hypoxic regions or reduce the dose to normoxic regions which again could lead to normal tissue sparing. With reliable hypoxia imaging, RBE-OER weighting could become a useful tool for proton therapy plan optimization.


Assuntos
Terapia com Prótons , Humanos , Hipóxia/radioterapia , Oxigênio , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Eficiência Biológica Relativa
4.
Phys Med ; 76: 166-172, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32683269

RESUMO

INTRODUCTION: The increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia. METHODS: The RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET). The OER depends on the partial oxygen pressure (pO2) and LET. To demonstrate model performance, calculations were done with spread-out Bragg peaks (SOBP) in water phantoms with pO2 ranging from strongly hypoxic to normoxic (0.01-30 mmHg) and with a head and neck cancer proton plan optimized with an RBE of 1.1 and pO2 estimated voxel-by-voxel using [18F]-EF5 PET. An RBE of 1.1 and the Rørvik RBE model were used for the ROWD calculations. RESULTS: The SOBP in water had decreasing ROWD with decreasing pO2. In the plans accounting for oxygenation, the median target doses were approximately a factor 1.1 lower than the corresponding plans which did not consider the OER. Hypoxia adapted target ROWDs were considerably more heterogeneous than the RBE1.1-weighted doses. CONCLUSION: We realized a Monte Carlo based tool for calculating the ROWD. Read-in of patient pO2 and estimation of ROWD with flexibility in choice of RBE model was achieved, giving a tool that may be useful in future clinical applications of hypoxia-guided particle therapy.


Assuntos
Terapia com Prótons , Humanos , Hipóxia , Método de Monte Carlo , Oxigênio , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...