Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(1): 41, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287808

RESUMO

BACKGROUND: The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is an oncofetal protein that is overexpressed in several cancer entities. Employing IMP2 knockout colorectal cancer cells, we could show the important role of IMP2 in several hallmarks of cancer. This study aimed to functionally characterize IMP2 in lung (A549, LLC1) and hepatocellular carcinoma (HepG2, Huh7) cell lines to assess its role as a potential target for these cancer entities. METHODS: IMP2 knockouts were generated by CRISPR/Cas9 and its variant approach prime editing; the editing efficiency of two single guide RNAs (sgRNAs) was verified via next-generation sequencing. We studied the effect of IMP2 knockout on cell proliferation, colony formation, and migration and employed small-molecule inhibitors of IMP2. RESULTS: Despite multiple attempts, it was not possible to generate IMP2 biallelic knockouts in A549 and Huh7 cells. Both sgRNAs showed good editing efficiency. However, edited cells lost their ability to proliferate. The attempt to generate an IMP2 biallelic knockout in LLC1 cells using CRISPR/Cas9 was successful. Monoallelic knockout cell lines of IMP2 showed a reduction in 2D cell proliferation and reduced migration. In 3D cultures, a change in morphology from compact spheroids to loose aggregates and a distinct reduction in the colony formation ability of the IMP2 knockouts was observed, an effect that was mimicked by previously identified IMP2 inhibitor compounds that also showed an inhibitory effect on colony formation. CONCLUSIONS: Our in vitro target validation supports that IMP2 is essential for tumor cell proliferation, migration, and colony formation in several cancer entities.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Humanos , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética
2.
Metab Eng ; 78: 48-60, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142115

RESUMO

Derivatizing natural products (NPs) is essential in structure-activity relationship (SAR) studies, compound optimization, and drug development. Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent one of the major classes of natural products. Thioholgamide represents thioamitide - a recently emerged family of RiPPs with unique structures and great potential in anticancer drug development. Although the method for generating the RiPP library by codon substitutions in the precursor peptide gene is straightforward, the techniques to perform RiPP derivatization in Actinobacteria remain limited and time-consuming. Here, we report a facile system for producing a library of randomized thioholgamide derivatives utilizing an optimized Streptomyces host. This technique enabled us to access all possible amino acid substitutions of the thioholgamide molecule, one position at a time. Out of 152 potential derivatives, 85 were successfully detected, revealing the impact of amino acid substitutions on thioholgamide post-translational modifications (PTMs). Moreover, new PTMs were observed among thioholgamide derivatives: thiazoline heterocycles, which have not yet been reported for thioamitides, and S-methylmethionine, which is very rare in nature. The obtained library was subsequently used for thioholgamide SAR studies and stability assays.


Assuntos
Produtos Biológicos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Peptídeos/química , Processamento de Proteína Pós-Traducional , Biblioteca Gênica , Produtos Biológicos/metabolismo
3.
J Med Chem ; 65(21): 14740-14763, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269107

RESUMO

To develop novel antibiotics, targeting the early steps of cell wall peptidoglycan biosynthesis seems to be a promising strategy that is still underutilized. MurA, the first enzyme in this pathway, is targeted by the clinically used irreversible inhibitor fosfomycin. However, mutations in its binding site can cause bacterial resistance. We herein report a series of novel reversible pyrrolidinedione-based MurA inhibitors that equally inhibit wild type (WT) MurA and the fosfomycin-resistant MurA C115D mutant, showing an additive effect with fosfomycin for the inhibition of WT MurA. For the most potent inhibitor 46 (IC50 = 4.5 µM), the mode of inhibition was analyzed using native mass spectrometry and protein NMR spectroscopy. The compound class was nontoxic against human cells and highly stable in human S9 fraction, human plasma, and bacterial cell lysate. Taken together, this novel compound class might be further developed toward antibiotic drug candidates that inhibit cell wall synthesis.


Assuntos
Alquil e Aril Transferases , Fosfomicina , Humanos , Fosfomicina/química , Succinimidas , Peptidoglicano , Antibacterianos/farmacologia , Bactérias/metabolismo , Inibidores Enzimáticos/química
4.
Front Oncol ; 12: 872223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646663

RESUMO

Natural products have been shown to serve as promising starting points for novel anti-cancer drugs. In this study, the anti-cancer activities of the purple compound violacein, initially isolated from Chromobacterium violaceum, were investigated. To highlight the crucial role of the tumor microenvironment on the effectiveness of cancer therapies, this study includes effects on macrophages as prototypic cells of the microenvironment in addition to the investigation of tumor-centric activities. Using 2D and 3D cell culture models, automated live-cell microscopy, and biochemical analyses, violacein was demonstrated to inhibit tumor cell proliferation and migration. The violacein-triggered tumor cell death was further associated with caspase 3-like activation and ATP release. Stimuli released from dead cells resulted in inflammatory activation of macrophages, as shown by NF-κB reporter cell assays, macrophage morphology, and gene expression analysis. Moreover, macrophages deficient in the inflammasome component Nlrp3 were found to be significantly less sensitive towards treatment with violacein and doxorubicin. Taken together, this study provides new insights into the biological activity of violacein against cancer. In addition, the in vitro data suggest immunogenic features of induced cell death, making violacein an interesting candidate for further studies investigating the compound as an inducer of immunogenic cell death.

5.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209079

RESUMO

Zebrafish (ZF; Danio rerio) larvae have become a popular in vivo model in drug metabolism studies. Here, we investigated the metabolism of methyl 2-[1-(4-fluorobutyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate (4F-MDMB-BINACA) in ZF larvae after direct administration of the cannabinoid via microinjection, and we visualized the spatial distributions of the parent compound and its metabolites by mass spectrometry imaging (MSI). Furthermore, using genetically modified ZF larvae, the role of cannabinoid receptor type 1 (CB1) and type 2 (CB2) on drug metabolism was studied. Receptor-deficient ZF mutant larvae were created using morpholino oligonucleotides (MOs), and CB2-deficiency had a critical impact on liver development of ZF larva, leading to a significant reduction of liver size. A similar phenotype was observed when treating wild-type ZF larvae with 4F-MDMB-BINACA. Thus, we reasoned that the cannabinoid-induced impaired liver development might also influence its metabolic function. Studying the metabolism of two synthetic cannabinoids, 4F-MDMB-BINACA and methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7'N-5F-ADB), revealed important insights into the in vivo metabolism of these compounds and the role of cannabinoid receptor binding.


Assuntos
Canabinoides/farmacologia , Inativação Metabólica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Canabinoides/síntese química , Canabinoides/química , Fenômenos Químicos , Larva , Fígado/patologia , Redes e Vias Metabólicas , Estrutura Molecular , Tamanho do Órgão/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peixe-Zebra
6.
ACS Chem Biol ; 17(2): 361-375, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35023719

RESUMO

The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is overexpressed in several tumor entities, promotes tumorigenesis and tumor progression, and has been suggested to worsen the disease outcome. The aim of this study is to (I) validate IMP2 as a potential target for colorectal cancer, (II) set up a screening assay for small-molecule inhibitors of IMP2, and (III) test the biological activity of the obtained hit compounds. Analyses of colorectal and liver cancer gene expression data showed reduced survival in patients with a high IMP2 expression and in patients with a higher IMP2 expression in advanced tumors. In vitro target validation in 2D and 3D cell cultures demonstrated a reduction in cell viability, migration, and proliferation in IMP2 knockout cells. Also, xenotransplant tumor cell growth in vivo was significantly reduced in IMP2 knockouts. Different compound libraries were screened for IMP2 inhibitors using a fluorescence polarization assay, and the results were confirmed by the thermal shift assay and saturation-transfer difference NMR. Ten compounds, which belong to two classes, that is, benzamidobenzoic acid class and ureidothiophene class, were validated in vitro and showed a biological target specificity. The three most active compounds were also tested in vivo and exhibited reduced tumor xenograft growth in zebrafish embryos. In conclusion, our findings support that IMP2 represents a druggable target to reduce tumor cell proliferation.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Proteínas de Ligação a RNA/metabolismo , Peixe-Zebra/metabolismo
7.
Adv Sci (Weinh) ; 9(8): e2104372, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038236

RESUMO

Recently, first insights into the regulation and the role of the RNA-binding protein IMP2 in macrophage activation have been published by Wang et al. This study addresses differences in the regulation of IMP2 between the human and murine system. While the expression of IMP2 in anti-inflammatory macrophages is synchronous in mice and men, IMP2 expression is regulated differently in inflammatory macrophages.


Assuntos
Ativação de Macrófagos , PPAR gama , Animais , Humanos , Macrófagos/metabolismo , Camundongos , PPAR gama/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
EBioMedicine ; 72: 103578, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34571364

RESUMO

BACKGROUND: Based on reports on elevated cholesterol levels in cancer cells, strategies to lower cholesterol synthesis have been suggested as an antitumour strategy. However, cholesterol depletion has also been shown to induce tumour-promoting actions in tumour-associated macrophages (TAMs). METHODS: We performed lipidomic and transcriptomic analyses of human lung cancer material. To assess whether the TAM phenotype is shaped by secreted factors produced by tumour cells, primary human monocyte-derived macrophages were polarized towards a TAM-like phenotype using tumour cell-conditioned medium. FINDINGS: Lipidomic analysis of lung adenocarcinoma (n=29) and adjacent non-tumour tissues (n=22) revealed a significant accumulation of free cholesterol and cholesteryl esters within the tumour tissue. In contrast, cholesterol levels were reduced in TAMs isolated from lung adenocarcinoma tissues when compared with alveolar macrophages (AMs) obtained from adjacent non-tumour tissues. Bulk-RNA-Seq revealed that genes involved in cholesterol biosynthesis and metabolism were downregulated in TAMs, while cholesterol efflux transporters were upregulated. In vitro polarized TAM-like macrophages showed an attenuated lipogenic gene expression signature and exhibited lower cholesterol levels compared with non-polarized macrophages. A genome-wide comparison by bulk RNA-Seq confirmed a high similarity of ex vivo TAMs and in vitro TAM-like macrophages. Modulation of intracellular cholesterol levels by either starving, cholesterol depletion, or efflux transporter inhibition indicated that cholesterol distinctly shapes macrophage gene expression. INTERPRETATION: Our data show an opposite dysregulation of cholesterol homeostasis in tumour tissue vs. TAMs. Polarization of in vitro differentiated macrophages by tumour cell-conditioned medium recapitulates key features of ex vivo TAMs. FUNDING: Deutsche Forschungsgemeinschaft (DFG), Landesforschungsf €orderungsprogramm Saarland (LFPP).


Assuntos
Colesterol/genética , Homeostase/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos Associados a Tumor/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Expressão Gênica/genética , Humanos , Microambiente Tumoral/genética
9.
Cancers (Basel) ; 12(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438733

RESUMO

Natural products represent powerful tools searching for novel anticancer drugs. Thioholgamide A (thioA) is a ribosomally synthesized and post-translationally modified peptide, which has been identified as a product of Streptomyces sp. MUSC 136T. In this study, we provide a comprehensive biological profile of thioA, elucidating its effects on different hallmarks of cancer in tumor cells as well as in macrophages as crucial players of the tumor microenvironment. In 2D and 3D in vitro cell culture models thioA showed potent anti-proliferative activities in cancer cells at nanomolar concentrations. Anti-proliferative actions were confirmed in vivo in zebrafish embryos. Cytotoxicity was only induced at several-fold higher concentrations, as assessed by live-cell microscopy and biochemical analyses. ThioA exhibited a potent modulation of cell metabolism by inhibiting oxidative phosphorylation, as determined in a live-cell metabolic assay platform. The metabolic modulation caused a repolarization of in vitro differentiated and polarized tumor-promoting human monocyte-derived macrophages: ThioA-treated macrophages showed an altered morphology and a modulated expression of genes and surface markers. Taken together, the metabolic regulator thioA revealed low activities in non-tumorigenic cells and an interesting anti-cancer profile by orchestrating different hallmarks of cancer, both in tumor cells as well as in macrophages as part of the tumor microenvironment.

10.
Microorganisms ; 8(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392775

RESUMO

Natural products produced by bacteria found in unusual and poorly studied ecosystems, such as Lake Baikal, represent a promising source of new valuable drug leads. Here we report the isolation of a new Streptomyces sp. strain IB201691-2A from the Lake Baikal endemic mollusk Benedictia baicalensis. In the course of an activity guided screening three new angucyclines, named baikalomycins A-C, were isolated and characterized, highlighting the potential of poorly investigated ecological niches. Besides that, the strain was found to accumulate large quantities of rabelomycin and 5-hydroxy-rabelomycin, known shunt products in angucyclines biosynthesis. Baikalomycins A-C demonstrated varying degrees of anticancer activity. Rabelomycin and 5-hydroxy-rabelomycin further demonstrated antiproliferative activities. The structure elucidation showed that baikalomycin A is a modified aquayamycin with ß-d-amicetose and two additional hydroxyl groups at unusual positions (6a and 12a) of aglycone. Baikalomycins B and C have alternating second sugars attached, α-l-amicetose and α-l-aculose, respectively. The gene cluster for baikalomycins biosynthesis was identified by genome mining, cloned using a transformation-associated recombination technique and successfully expressed in S. albus J1074. It contains a typical set of genes responsible for an angucycline core assembly, all necessary genes for the deoxy sugars biosynthesis, and three genes coding for the glycosyltransferase enzymes. Heterologous expression and deletion experiments allowed to assign the function of glycosyltransferases involved in the decoration of baikalomycins aglycone.

11.
FASEB J ; 34(3): 4684-4701, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030813

RESUMO

Statins, the most prescribed class of drugs for the treatment of hypercholesterolemia, can cause muscle-related adverse effects. It has been shown that the glucocorticoid-induced leucine zipper (GILZ) plays a key role in the anti-myogenic action of dexamethasone. In the present study, we aimed to evaluate the role of GILZ in statin-induced myopathy. Statins induced GILZ expression in C2C12 cells, primary murine myoblasts/myotubes, primary human myoblasts, and in vivo in zebrafish embryos and human quadriceps femoris muscle. Gilz induction was mediated by FOXO3 activation and binding to the Gilz promoter, and could be reversed by the addition of geranylgeranyl, but not farnesyl, pyrophosphate. Atorvastatin decreased Akt phosphorylation and increased cleaved caspase-3 levels in myoblasts. This effect was reversed in myoblasts from GILZ knockout mice. Similarly, myofibers isolated from knockout animals were more resistant toward statin-induced cell death than their wild-type counterparts. Statins also impaired myoblast differentiation, and this effect was accompanied by GILZ induction. The in vivo relevance of our findings was supported by the observation that gilz overexpression in zebrafish embryos led to impaired embryonic muscle development. Taken together, our data point toward GILZ as an essential mediator of the molecular mechanisms leading to statin-induced muscle damage.


Assuntos
Glucocorticoides/farmacologia , Zíper de Leucina/fisiologia , Músculos/metabolismo , Músculos/patologia , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Imunofluorescência , Humanos , Hibridização In Situ , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Músculos/efeitos dos fármacos , Fosfatos de Poli-Isoprenil/farmacologia , Peixe-Zebra
12.
Cells ; 9(1)2020 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940898

RESUMO

In 2019, it was estimated that 2.5 million people die from lower tract respiratory infections annually. One of the main causes of these infections is Staphylococcus aureus, a bacterium that can invade and survive within mammalian cells. S. aureus intracellular infections are difficult to treat because several classes of antibiotics are unable to permeate through the cell wall and reach the pathogen. This condition increases the need for new therapeutic avenues, able to deliver antibiotics efficiently. In this work, we obtained outer membrane vesicles (OMVs) derived from the myxobacteria Cystobacter velatus strain Cbv34 and Cystobacter ferrugineus strain Cbfe23, that are naturally antimicrobial, to target intracellular infections, and investigated how they can affect the viability of epithelial and macrophage cell lines. We evaluated by cytometric bead array whether they induce the expression of proinflammatory cytokines in blood immune cells. Using confocal laser scanning microscopy and flow cytometry, we also investigated their interaction and uptake into mammalian cells. Finally, we studied the effect of OMVs on planktonic and intracellular S. aureus. We found that while Cbv34 OMVs were not cytotoxic to cells at any concentration tested, Cbfe23 OMVs affected the viability of macrophages, leading to a 50% decrease at a concentration of 125,000 OMVs/cell. We observed only little to moderate stimulation of release of TNF-alpha, IL-8, IL-6 and IL-1beta by both OMVs. Cbfe23 OMVs have better interaction with the cells than Cbv34 OMVs, being taken up faster by them, but both seem to remain mostly on the cell surface after 24 h of incubation. This, however, did not impair their bacteriostatic activity against intracellular S. aureus. In this study, we provide an important basis for implementing OMVs in the treatment of intracellular infections.


Assuntos
Antibacterianos/farmacologia , Membrana Externa Bacteriana/metabolismo , Vesículas Extracelulares/metabolismo , Myxococcales/química , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/biossíntese , Antibacterianos/química , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Vesículas Extracelulares/química , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Myxococcales/metabolismo , Células RAW 264.7 , Células THP-1
13.
Biotechnol Bioeng ; 117(3): 776-788, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31736060

RESUMO

Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body. Therefore, we investigated the interaction of biodegradable surface-modified poly(lactic-co-glycolic acid) (PLGA) particles with yeast cells to overcome the unspecificity of the particulate carriers. Cells of different Saccharomyces cerevisiae strains were characterized regarding their interaction with PLGA-NPs under isotonic and hypotonic conditions. The particles were shown to efficiently interact with yeast cells leading to stable NP/yeast-complexes allowing to associate or even internalize compounds. Notably, applying those complexes to a coculture model of HeLa cells and macrophages, the macrophages were specifically targeted. This novel nano-in-micro carrier system suggests itself as a promising tool for the delivery of biologically active agents into phagocytic cells combining specificity and efficiency.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Macrófagos/metabolismo , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Saccharomyces cerevisiae/metabolismo , Sobrevivência Celular , Técnicas de Cocultura , Células HeLa , Humanos , Imunoterapia , Nanopartículas/metabolismo , Fagocitose , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia
14.
Front Immunol ; 10: 1634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396208

RESUMO

Glucocorticoids (GCs) are widely prescribed therapeutics for the treatment of inflammatory diseases, and endogenous GCs play a key role in immune regulation. Toll-like receptors (TLRs) enable innate immune cells, such as macrophages, to recognize a wide variety of microbial ligands, thereby promoting inflammation. The interaction of GCs with macrophages in the immunosuppressive resolution phase upon prolonged TLR activation is widely unknown. Treatment of human alveolar macrophages (AMs) with the synthetic GC dexamethasone (Dex) did not alter the expression of TLRs -1, -4, and -6. In contrast, TLR2 was upregulated in a GC receptor-dependent manner, as shown by Western blot and qPCR. Furthermore, long-term lipopolysaccharide (LPS) exposure mimicking immunosuppression in the resolution phase of inflammation synergistically increased Dex-mediated TLR2 upregulation. Analyses of publicly available datasets suggested that TLR2 is induced during the resolution phase of inflammatory diseases, i.e., under conditions associated with high endogenous GC production. TLR2 induction did not enhance TLR2 signaling, as indicated by reduced cytokine production after treatment with TLR2 ligands in Dex- and/or LPS-primed AMs. Thus, we hypothesized that the upregulated membrane-bound TLR2 might serve as a precursor for soluble TLR2 (sTLR2), known to antagonize TLR2-dependent cell actions. Supernatants of LPS/Dex-primed macrophages contained sTLR2, as demonstrated by Western blot analysis. Activation of metalloproteinases resulted in enhanced sTLR2 shedding. Additionally, we detected full-length TLR2 and assumed that this might be due to the production of TLR2-containing extracellular vesicles (EVs). EVs from macrophage supernatants were isolated by sequential centrifugation. Both untreated and LPS/Dex-treated cells produced vesicles of various sizes and shapes, as shown by cryo-transmission electron microscopy. These vesicles were identified as the source of full-length TLR2 in macrophage supernatants by Western blot and mass spectrometry. Flow cytometric analysis indicated that TLR2-containing EVs were able to bind the TLR2 ligand Pam3CSK4. In addition, the presence of EVs reduced inflammatory responses in Pam3CSK4-treated endothelial cells and HEK Dual reporter cells, demonstrating that TLR2-EVs can act as decoy receptors. In summary, our data show that sTLR2 and full-length TLR2 are released by macrophages under anti-inflammatory conditions, which may contribute to GC-induced immunosuppression.


Assuntos
Glucocorticoides/farmacologia , Tolerância Imunológica/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/imunologia , Receptor 2 Toll-Like/imunologia , Dexametasona/farmacologia , Humanos , Imunossupressores/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Receptor 2 Toll-Like/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo
15.
Angew Chem Int Ed Engl ; 58(37): 12930-12934, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31310031

RESUMO

Metabolic profiling of Streptomyces sp. IB2014/016-6 led to the identification of three new tetrahydroisoquinoline natural products, perquinolines A-C (1-3). Labelled precursor feeding studies and the cloning of the pqr biosynthetic gene cluster revealed that 1-3 are assembled by the action of several unusual enzymes. The biosynthesis starts with the condensation of succinyl-CoA and l-phenylalanine catalyzed by the amino-7-oxononanoate synthase-like enzyme PqrA, representing rare chemistry in natural product assembly. The second condensation and cyclization events are conducted by PqrG, an enzyme resembling an acyl-CoA ligase. Last, ATP-grasp RimK-type ligase PqrI completes the biosynthesis by transferring a γ-aminobutyric acid or ß-alanine moiety. The discovered pathway represents a new route for assembling the tetrahydroisoquinoline cores of natural products.


Assuntos
Produtos Biológicos/metabolismo , Streptomyces/metabolismo , Tetra-Hidroisoquinolinas/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas
16.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261900

RESUMO

The insulin-like growth factor 2 (IGF2) mRNA binding protein IMP2 (IGF2BP2) is an oncogenic protein known to be overexpressed in different tumor types. Pancreatic cancer is a very lethal cancer that requires early diagnosis and new treatment options. The aim of our study was to investigate the role of IMP2 in the initiation and progression of pancreatic ductal adenocarcinoma (PDAC). IMP2 was significantly overexpressed in a human precursor (PanIN) lesions suggesting IMP2 as a marker for early stages of PDAC. In a PDAC cohort of matched normal and tumor samples IMP2 showed overexpression in tumor tissues compared with normal pancreatic tissue. Strict correlation analysis (threshold R2 > 0.75) revealed 22 genes highly positively and 9 genes highly negatively correlating with IMP2. Besides genes involved in the inhibition of apoptosis (Bcl-XL), especially factors involved in ubiquitination were strongly correlated with IMP2 expression: SMURF1 and FBXO45. Moreover, protein kinase C (PKC) signaling pathway was distinctly affected: DXS1179E encoding PKC iota, PKC substrate PLEK2, and inositol triphosphate receptor IP3R3 were positively correlated with IMP2 expression. Besides tumor initiation, IMP2 also seemed to have an impact on tumor progression. TGF-ß treatment of Panc-1 pancreatic cancer cells to induce epithelial-mesenchymal transition (EMT) was accompanied by increased IMP2 expression. EMT is important for cancer cells to gain migratory and invasive potential, which is essential for metastasis. Concordantly, circulating tumor cells showed higher IMP2 levels as compared with normal tissue from tumor origin and with normal hematological cells. Accordingly, IMP2 protein levels correlated with poor survival. In conclusion, as IMP2 seems to promote tumor progression of PDAC, it might be an interesting diagnostic and prognostic marker as well as a novel target for the treatment of PDAC.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Pancreáticas/metabolismo , Proteínas de Ligação a RNA/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Quinase C/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...