Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 42(13): 4717-22, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18677996

RESUMO

This study concerns an arctic marine environment that was contaminated by actinide elements after a nuclear accident in 1968, the so-called Thule accident In this study we have analyzed five isolated hot particles as well as sediment samples containing particles from the weapon material for the determination of the nuclear fingerprint of the accident. We report that the fissile material in the hydrogen weapons involved in the Thule accident was a mixture of highly enriched uranium and weapon-grade plutonium and that the main fissile material was 235U (about 4 times more than the mass of 239Pu). In the five hot particles examined, the measured uranium atomic ratio was 235U/238U = 1.02 +/- 0.16 and the Pu-isotopic ratios were as follows: 24Pu/239Pu = 0.0551 +/- 0.0008 (atom ratio), 238Pu/239+240Pu = 0.0161 +/- 0.0005 (activity ratio), 241Pu/239+240Pu = 0.87 +/- 0.12 (activity ratio), and 241Am/ 239+240Pu = 0.169 +/- 0.005 (activity ratio) (reference date 2001-10-01). From the activity ratios of 241Pu/241Am, we estimated the time of production of this weapon material to be from the late 1950s to the early 1960s. The results from reanalyzed bulk sediment samples showed the presence of more than one Pu source involved in the accident, confirming earlier studies. The 238Pu/239+240PU activity ratio and the 240Pu/ 239Pu atomic ratio were divided into at least two Pu-isotopic ratio groups. For both Pu-isotopic ratios, one ratio group had identical ratios as the five hot particles described above and for the other groups the Pu isotopic ratios were lower (238Pu/ 239+240PU activity ratio approximately 0.01 and the 240Pu/P239Pu atomic ratio 0.03). On the studied particles we observed that the U/Pu ratio decreased as a function of the time these particles were present in the sediment. We hypothesis that the decrease in the ratio is due to a preferential leaching of U relative to Pu from the particle matrix.


Assuntos
Amerício/análise , Desastres , Sedimentos Geológicos/análise , Armas Nucleares , Plutônio/análise , Poluentes Radioativos do Solo/análise , Urânio/análise , Groenlândia , Espectrometria de Massas
2.
J Environ Radioact ; 82(3): 285-301, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15885376

RESUMO

The long-lived anthropogenic radionuclides (237)Np, (239)Pu and (240)Pu were determined in marine environmental samples (seaweed and seawater) collected from Swedish-Danish waters and the North Atlantic Ocean at various locations on different occasions during the period 1991-2001. The measurements were performed with sector field Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and conventional alpha spectrometry. The (237)Np activity concentrations in Fucus vesiculosus and surface seawater from the Swedish west coast and Danish waters ranged from 0.16+/-0.02 to 1.02+/-0.09 mBq kg(-1) (dry weight) and 0.65+/-0.02 to 1.69+/-0.02 mBq m(-3), respectively, depending on the location and sampling year. Most of the (237)Np in these waters is believed to originate from the Sellafield nuclear reprocessing plant, with some contribution from global fallout. The (240)Pu/(239)Pu atomic ratios in F. vesiculosus samples are reported in this study with an overall average of 0.17+/-0.03. The (237)Np and (239)Pu activity concentrations observed in surface seawater collected in North Atlantic waters ranged from 0.16+/-0.01 to 0.62+/-0.08 mBq m(-3) and from 0.64+/-0.05 to 4.27+/-0.08 mBq m(-3), respectively, and the (237)Np/(239)Pu atomic ratios were a good indicator of conservative behaviour of Np in marine waters.


Assuntos
Fucus/química , Netúnio/análise , Plutônio/análise , Água do Mar/análise , Poluentes Radioativos da Água/análise , Oceano Atlântico , Dinamarca , Fucus/metabolismo , Netúnio/metabolismo , Plutônio/metabolismo , Monitoramento de Radiação , Suécia , Poluentes Radioativos da Água/metabolismo
3.
Sci Total Environ ; 331(1-3): 53-67, 2004 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-15325141

RESUMO

Levels of radioactive contaminants in various Greenland environments have been assessed during 1999-2001. The source of 137Cs, 90Sr and (239,240)Pu in terrestrial and fresh water environments is mainly global fallout. In addition, the Chernobyl accident gave a small contribution of 137Cs. Reindeer and lamb contain the largest observed 137Cs concentrations in the terrestrial environment--up to 80 Bq kg(-1) fresh weight have been observed in reindeer. Due to special environmental conditions, 137Cs is transferred to landlocked Arctic char with extremely high efficiency in South Greenland leading to concentrations up to 100 Bq kg(-1) fresh weight. In these cases very long ecological half-lives are seen. Concentrations of 99Tc, 137Cs and 90Sr in seawater and in marine biota decrease in the order North-East Greenland and the coastal East Greenland current > South-West Greenland > Central West Greenland and North-West Greenland > Irmiger Sea-Faroe Islands. The general large-scale oceanic circulation combined with European coastal discharges and previous contamination of the Arctic Ocean causes this. As the same tendency is seen for the persistent organic pollutants (POPs) DDT and PCB in marine biota, it is suggested that long-distance oceanic transport by coastal currents is a significant pathway also for POPs in the Greenland marine environment. The peak 99Tc discharge from Sellafield 1994-1995 has only been slightly visible in the present survey year 2000. The concentrations are expected to increase in the future, especially in East Greenland. The Bylot Sound at the Thule Airbase (Pituffik) in North-West Greenland was contaminated with plutonium and enriched uranium in a weapons accident in 1968. Biological activity has mixed accident plutonium efficiently into the new sediments resulting in continued high surface sediment concentrations three decades after the accident. Transfer of plutonium to benthic biota is low--and lower than observed in the Irish Sea. This is supposed to be caused by the physico-chemical form of the accident plutonium. A recent study indicates that 'hot particles' hold considerably more plutonium than previously anticipated and that the Bylot Sound sediments may account for the major part of the un-recovered plutonium after the accident, i.e. approximately 3 kg.


Assuntos
Plutônio/análise , Centrais Elétricas , Cinza Radioativa , Liberação Nociva de Radioativos , Poluentes Radioativos/análise , Animais , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Groenlândia , Meia-Vida , Radioisótopos/análise , Água do Mar , Ucrânia , Movimentos da Água
4.
Analyst ; 127(1): 70-5, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11827399

RESUMO

Large volume fjord and seawater samples have been radiochemically prepared for ICP-MS analysis in order to test the robustness of the procedure and to carry out a comparison of two ICP-MS set-ups. A sector field instrument (MicroMass PT2) coupled with an ultrasonic nebuliser and a quadrupole ICP-MS (Perkin-Elmer Elan 6000) coupled with an electrothermal vaporisation (ETV) unit were used. The results showed that the radiochemical procedure was robust, removing Ru and Mo to acceptable levels, and that the two set-ups gave results that were in agreement. The correlation coefficient between the sets of 11 results was 1.0 +/- 0.05. The importance of establishing the matrix effect when using an ETV is discussed.


Assuntos
Tecnécio/análise , Poluentes Radioativos da Água/análise , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...