Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Med Infect Dis ; 8(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37888603

RESUMO

In sub-Saharan Africa, despite the implementation of multiple control interventions, the prevalence of malaria infection and clinical cases remains high. The primary tool for vector control against malaria in this region is the use of long-lasting insecticide-treated nets (LLINs) combined or not with indoor residual spraying (IRS) to achieve a synergistic effect in protection. The objective of this study was to assess the effectiveness of LLINs, with or without IRS, protected against Plasmodium falciparum infection and uncomplicated clinical cases (UCC) of malaria in Benin. A case-control study was conducted, encompassing all age groups, in the urban area of Djougou and the rural area of Cobly. A cross-sectional survey was conducted that included 2080 individuals in the urban area and 2770 individuals in the rural area. In the urban area, sleeping under LLINs did not confer significant protection against malaria infection and UCC when compared to no intervention. However, certain neighbourhoods benefited from a notable reduction in infection rates ranging from 65% to 85%. In the rural area, the use of LLINs alone, IRS alone, or their combination did not provide additional protection compared to no intervention. IRS alone and LLINs combined with IRS provided 61% and 65% protection against malaria infection, respectively, compared to LLINs alone. The effectiveness of IRS alone and LLINs combined with IRS against UCC was 52% and 54%, respectively, when compared to LLINs alone. In both urban and rural areas, the use of LLINs alone, IRS alone, and their combination did not demonstrate significant individual protection against malaria infection and clinical cases when compared to no intervention. In the conditions of this study, LLINs combined or not with IRS are not effective enough to eliminate malaria. In addition to the interventions, this study identified factors associated with malaria in Benin as housing design, neglected social groups like gender-marginalised individuals and adolescents, and socio-economic conditions acting as barriers to effective malaria prevention. Addressing these factors is crucial in order to facilitate malaria elimination efforts in sub-Saharan Africa.

2.
PLoS One ; 18(9): e0291755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729177

RESUMO

BACKGROUND: Long-lasting insecticidal bed nets (LLINs) are a key measure for preventing malaria and their evaluation is coordinated by the World Health Organization Pesticide Evaluation Scheme (WHOPES). LifeNet® was granted WHOPES time-limited interim recommendation in 2011 after successful Phase I and Phase II evaluations. Here, we evaluated the durability and community acceptance of LifeNet® in a Phase III trial from June 2014 to June 2017 in Benin rural area. METHODS: A prospective longitudinal, cluster-randomized, controlled trial with households as the unit of observation was designed to assess the performance of LifeNet® over a three-year period, using a WHOPES fully recommended LLIN (PermaNet® 2.0) as a positive control. The primary outcomes were the bioassay performance using WHO cone assays and tunnel tests, the insecticide content and physical integrity. RESULTS: At baseline, 100% of LLINs were within the tolerance limits of their target deltamethrin concentrations. By 36 months only 17.3% of LifeNet® and 8.5% of PermaNet® LLINs still were within their target deltamethrin concentrations. Despite these low rates, 100% of both LLINs meet WHO efficacy criteria (≥ 80% mortality or ≥ 95% knockdown or tunnel test criteria of ≥ 80% mortality or ≥ 90% blood-feeding inhibition) after 36 months using WHO cone bio-assays and tunnel tests. The proportion of LLINs in good physical condition was 33% for LifeNet® and 29% for PermaNet® after 36 months. After 36 M the survivorship was 21% and 26% for LifeNet® and PermaNet® respectively. Although both LLINs were well accepted by the population, complaints of side effects were significantly higher among LifeNet® users than PermaNet® ones. CONCLUSION: LifeNet® LLINs did meet WHO criteria for bio-efficacy throughout the study period and were well accepted by the population. This is an important step towards getting a full WHO recommendation for use in malaria endemic countries.


Assuntos
Inseticidas , Praguicidas , Piretrinas , Polipropilenos , Benin , Estudos Prospectivos , Inseticidas/farmacologia , Piretrinas/farmacologia
3.
Parasit Vectors ; 16(1): 300, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641104

RESUMO

BACKGROUND: Eave tube technology is a novel method of insecticide application that uses an electrostatic coating system to boost insecticide efficacy against resistant mosquitoes. A series of previous experiments showed encouraging insecticidal effects against malaria vectors. This study was undertaken to assess the effects of the eave tube approach on other Culicidae, in particular Culex quinquefasciatus, under laboratory and semi-field conditions. METHODS: Larvae of Cx. quinquefasciatus from Bouaké were collected and reared to adult stage, and World Health Organization (WHO) cylinder tests were performed to determine their resistance status. WHO standard 3-min cone bioassays were conducted using PermaNet 2.0 netting versus eave tube-treated inserts. To assess the transient exposure effect on Cx. quinquefasciatus, eave tube assay utilizing smelly socks as attractant was performed with exposure time of 30 s, 1 min, and 2 min on 10% beta-cyfluthrin-treated inserts. Residual activity of these treated inserts was then monitored over 9 months. Field tests involving release-recapture of Cx. quinquefasciatus within enclosures around experimental huts fitted with windows and untreated or insecticide-treated eave tubes were conducted to determine house entry preference and the impact of tubes on the survival of this species. RESULTS: Bouaké Cx. quinquefasciatus displayed high resistance to three out of four classes of insecticides currently used in public health. After 3 min of exposure in cone tests, 10% beta-cyfluthrin-treated inserts induced 100% mortality in Cx. quinquefasciatus, whereas the long-lasting insecticidal net (LLIN) only killed 4.5%. With reduced exposure time on the eave tube insert, mortality was still 100% after 2 min, 88% after 1 min, and 44% after 30 s. Mortality following 1 h exposure on 10% beta-cyfluthrin-treated insert was > 80% continuously up to 7 months post-treatment. Data suggest that Cx. quinquefasciatus have a stronger preference for entering a house through the eaves than through windows. Beta-cyfluthrin-treated inserts were able to kill 51% of resistant Cx. quinquefasciatus released within the enclosure. CONCLUSIONS: Eave tubes are a novel method for delivery of insecticide to the house. They attract nuisance host-seeking Cx. quinquefasciatus mosquitoes and are as effective in controlling them as they are against pyrethroid-resistant Anopheles gambiae, despite the high level of resistance Cx. quinquefasciatus have developed.


Assuntos
Anopheles , Culex , Inseticidas , Animais , Inseticidas/farmacologia , Côte d'Ivoire , Mosquitos Vetores
4.
Malar J ; 21(1): 188, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705981

RESUMO

BACKGROUND: A study was conducted prior to implementing a cluster-randomized controlled trial (CRT) of a lethal house lure strategy in central Côte d'Ivoire to provide baseline information on malaria indicators in 40 villages across five health districts. METHODS: Human landing catches (HLC) were performed between November and December 2016, capturing mosquitoes indoors and outdoors between 18.00 and 08.00 h. Mosquitoes were processed for entomological indicators of malaria transmission (human biting, parity, sporozoite, and entomological inoculation rates (EIR)). Species composition and allelic frequencies of kdr-w and ace-1R mutations were also investigated within the Anopheles gambiae complex. RESULTS: Overall, 15,632 mosquitoes were captured. Anopheles gambiae sensu lato (s.l.) and Anopheles funestus were the two malaria vectors found during the survey period, with predominance for An. gambiae (66.2%) compared to An. funestus (10.3%). The mean biting rate for An. gambiae was almost five times higher than that for An. funestus (19.8 bites per person per night for An. gambiae vs 4.3 bites per person per night for An. funestus) and this was evident indoors and outdoors. Anopheles funestus was more competent to transmit malaria parasites in the study area, despite relatively lower number tested for sporozoite index (4.14% (63/1521) for An. gambiae vs 8.01% (59/736) for An. funestus; χ2 = 12.216; P < 0.0001). There were no significant differences between the proportions infected outdoors and indoors for An. gambiae (4.03 vs 4.13%; χ2 = 0.011; P = 0.9197) and for An. funestus (7.89 vs 8.16%; χ2 = 2.58e-29; P = 1). The majority of both infected vectors with malaria parasites harboured Plasmodium falciparum (93.65% for An. gambiae and 98. 31% for An. funestus). Overall, the EIR range for both species in the different districts appeared to be high (0.35-2.20 infected bites per human per night) with the highest value observed in the district of North-Eastern-Bouaké. There were no significant differences between transmission occurring outdoor and indoor for both species. Of the An. gambiae s.l. analysed, only An. gambiae sensu stricto (14.1%) and Anopheles coluzzii (85.9%) were found. The allelic frequencies of kdr and ace-1R were higher in An. gambiae (0.97 for kdr and 0.19 for ace-1R) than in An. coluzzii (0.86 for kdr and 0.10 for ace-1R) (P < 0.001). CONCLUSION: Despite universal coverage with long-lasting insecticidal nets (LLINs) in the area, there was an abundance of the malaria vectors (An. gambiae and An. funestus) in the study area in central Côte d'Ivoire. Consistent with high insecticide resistance intensity previously detected in these districts, the current study detected high kdr frequency (> 85%), coupled with high malaria transmission pattern, which could guide the use of Eave tubes in the study areas.


Assuntos
Anopheles , Mordeduras e Picadas , Malária , Animais , Anopheles/parasitologia , Côte d'Ivoire/epidemiologia , Humanos , Resistência a Inseticidas/genética , Malária/prevenção & controle , Mosquitos Vetores/parasitologia , Esporozoítos
5.
Parasit Vectors ; 14(1): 581, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34801086

RESUMO

BACKGROUND: There is evidence that the knockdown resistance gene (Kdr) L1014F and acetylcholinesterase-1 gene (Ace-1R) G119S mutations involved in pyrethroid and carbamate resistance in Anopheles gambiae influence malaria transmission in sub-Saharan Africa. This is likely due to changes in the behaviour, life history and vector competence and capacity of An. gambiae. In the present study, performed as part of a two-arm cluster randomized controlled trial evaluating the impact of household screening plus a novel insecticide delivery system (In2Care Eave Tubes), we investigated the distribution of insecticide target site mutations and their association with infection status in wild An. gambiae sensu lato (s.l.) populations. METHODS: Mosquitoes were captured in 40 villages around Bouaké by human landing catch from May 2017 to April 2019. Randomly selected samples of An. gambiae s.l. that were infected or not infected with Plasmodium sp. were identified to species and then genotyped for Kdr L1014F and Ace-1R G119S mutations using quantitative polymerase chain reaction assays. The frequencies of the two alleles were compared between Anopheles coluzzii and Anopheles gambiae and then between infected and uninfected groups for each species. RESULTS: The presence of An. gambiae (49%) and An. coluzzii (51%) was confirmed in Bouaké. Individuals of both species infected with Plasmodium parasites were found. Over the study period, the average frequency of the Kdr L1014F and Ace-1R G119S mutations did not vary significantly between study arms. However, the frequencies of the Kdr L1014F and Ace-1R G119S resistance alleles were significantly higher in An. gambiae than in An. coluzzii [odds ratio (95% confidence interval): 59.64 (30.81-131.63) for Kdr, and 2.79 (2.17-3.60) for Ace-1R]. For both species, there were no significant differences in Kdr L1014F or Ace-1R G119S genotypic and allelic frequency distributions between infected and uninfected specimens (P > 0.05). CONCLUSIONS: Either alone or in combination, Kdr L1014F and Ace-1R G119S showed no significant association with Plasmodium infection in wild An. gambiae and An. coluzzii, demonstrating the similar competence of these species for Plasmodium transmission in Bouaké. Additional factors including behavioural and environmental ones that influence vector competence in natural populations, and those other than allele measurements (metabolic resistance factors) that contribute to resistance, should be considered when establishing the existence of a link between insecticide resistance and vector competence.


Assuntos
Anopheles , Resistência a Inseticidas/genética , Malária/transmissão , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/parasitologia , Côte d'Ivoire/epidemiologia , Genes de Insetos , Inseticidas/farmacologia , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Plasmodium/isolamento & purificação
6.
PLoS One ; 15(8): e0236920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745085

RESUMO

BACKGROUND: Twenty-seven villages were selected in southwest Burkina Faso to implement new vector control strategies in addition to long lasting insecticidal nets (LLINs) through a Randomized Controlled Trial (RCT). We conducted entomological surveys in the villages during the dry cold season (January 2017), dry hot season (March 2017) and rainy season (June 2017) to describe malaria vectors bionomics, insecticide resistance and transmission prior to this trial. METHODS: We carried out hourly catches (from 17:00 to 09:00) inside and outside 4 houses in each village using the Human Landing Catch technique. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were identified using molecular techniques as well as detection of Plasmodium falciparum infection and insecticide resistance target-site mutations. RESULTS: Eight Anopheles species were detected in the area. Anopheles funestus s.s was the main vector during the dry cold season. It was replaced by Anopheles coluzzii during the dry hot season whereas An. coluzzii and An. gambiae s.s. were the dominant species during the rainy season. Species composition of the Anopheles population varied significantly among seasons. All insecticide resistance mechanisms (kdr-w, kdr-e and ace-1 target site mutations) investigated were found in each members of the An. gambiae complex but at different frequencies. We observed early and late biting phenotypes in the main malaria vector species. Entomological inoculation rates were 2.61, 2.67 and 11.25 infected bites per human per month during dry cold season, dry hot season and rainy season, respectively. CONCLUSION: The entomological indicators of malaria transmission were high despite the universal coverage with LLINs. We detected early and late biting phenotypes in the main malaria vector species as well as physiological insecticide resistance mechanisms. These data will be used to evaluate the impact of complementary tools to LLINs in an upcoming RCT.


Assuntos
Anopheles , Resistência a Inseticidas/genética , Malária Falciparum/transmissão , Mosquitos Vetores/genética , Animais , Anopheles/classificação , Anopheles/genética , Anopheles/parasitologia , Burkina Faso/epidemiologia , Culex/classificação , Culex/genética , Culex/parasitologia , Culicidae/classificação , Culicidae/genética , Culicidae/parasitologia , Ecologia , Genótipo , Humanos , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Controle de Mosquitos/organização & administração , Mosquitos Vetores/classificação , Mosquitos Vetores/parasitologia , Plasmodium falciparum/isolamento & purificação , Estações do Ano
7.
Parasite ; 26: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31298995

RESUMO

A better understanding of malaria transmission at a local scale is essential for developing and implementing effective control strategies. In the framework of a randomized controlled trial (RCT), we aimed to provide an updated description of malaria transmission in the Korhogo area, northern Côte d'Ivoire, and to obtain baseline data for the trial. We performed human landing collections (HLCs) in 26 villages in the Korhogo area during the rainy season (September-October 2016, April-May 2017) and the dry season (November-December 2016, February-March 2017). We used PCR techniques to ascertain the species of the Anopheles gambiae complex, Plasmodium falciparum sporozoite infection, and insecticide resistance mechanisms in a subset of Anopheles vectors. Anopheles gambiae s.l. was the predominant malaria vector in the Korhogo area. Overall, more vectors were collected outdoors than indoors (p < 0.001). Of the 774 An. gambiae s.l. tested in the laboratory, 89.65% were An. gambiae s.s. and 10.35% were An. coluzzii. The frequencies of the kdr allele were very high in An. gambiae s.s. but the ace-1 allele was found at moderate frequencies. An unprotected individual living in the Korhogo area received an average of 9.04, 0.63, 0.06 and 0.12 infected bites per night in September-October, November-December, February-March, and April-May, respectively. These results demonstrate that the intensity of malaria transmission is extremely high in the Korhogo area, especially during the rainy season. Malaria control in highly endemic areas such as Korhogo needs to be strengthened with complementary tools in order to reduce the burden of the disease.


Assuntos
Anopheles/parasitologia , Ecologia , Resistência a Inseticidas , Inseticidas , Malária/transmissão , Animais , Anopheles/genética , Mordeduras e Picadas/epidemiologia , Côte d'Ivoire , Feminino , Humanos , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Plasmodium falciparum/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Estações do Ano
8.
Parasit Vectors ; 12(1): 146, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30917867

RESUMO

BACKGROUND: Although larviciding may be a valuable tool to supplement long-lasting insecticide nets (LLINs) in West Africa in different ecological settings, its actual impact on malaria burden and transmission has yet to be demonstrated. A randomized controlled trial was therefore undertaken to assess the effectiveness of larviciding using Bacillus thuringiensis israeliensis (Bti) in addition to the use of LLINs. In order to optimally implement such a larviciding intervention, we first aimed to identify and to characterize the breeding habitats of Anopheles spp. in the entire study area located in the vicinity of Korhogo in northern Côte d'Ivoire. METHODS: We conducted two surveys during the rainy and the dry season, respectively, in the thirty villages around Korhogo involved in the study. In each survey, water bodies located within a 2 km radius around each village were identified and assessed for the presence of mosquito larvae. We morphologically identified the larvae to the genus level and we characterized all of the habitats positive for Anopheles spp. larvae based on a predefined set of criteria. RESULTS: Overall, 620 and 188 water bodies positive for Anopheles spp. larvae were sampled in the rainy and the dry season, respectively. A broad range of habitat types were identified. Rice paddies accounted for 61% and 57% of the habitats encountered in the rainy and the dry season, respectively. In the rainy season, edges of rivers and streams (12%) were the second most abundant habitats for Anopheles spp. larvae. More than 90% of the Anopheles spp. breeding habitats were surrounded by green areas. Dams, ponds and drains produced higher numbers of Anopheles spp. larvae per square meter than rice paddies (RR = 1.51; 95% CI: 1.18-1.94; P = 0.0010). The density of Anopheles spp. larvae was significantly higher in habitats surrounded by low-density housing (RR = 4.81; 95% CI: 1.84-12.60; P = 0.0014) and green areas (RR = 3.96; 95% CI: 1.92-8.16; P = 0.0002] than habitats surrounded by high-density housing. Turbid water [RR = 1.42 (95% CI: 1.15-1.76; P = 0.0012) was associated with higher densities of Anopheles spp. larvae. The likelihood of finding mosquito pupae in Anopheles spp. breeding habitats was higher in the dry season (OR = 5.92; 95% CI: 2.11-16.63; P = 0.0007) than in the rainy season. CONCLUSIONS: Rice paddies represented the most frequent habitat type for Anopheles spp. larvae in the Korhogo area during both the rainy and the dry seasons. Anopheles spp. breeding habitats covered a very large and dynamic area in the rainy season whereas they were fewer in number in the dry season. In this context, implementing a larviciding strategy from the end of the rainy season to the dry season is presumably the most cost-effective strategy.


Assuntos
Anopheles/fisiologia , Ecossistema , Mosquiteiros Tratados com Inseticida , Inseticidas/administração & dosagem , Malária/prevenção & controle , Animais , Anopheles/efeitos dos fármacos , Bacillus thuringiensis , Cruzamento , Côte d'Ivoire/epidemiologia , Larva , Malária/epidemiologia , Oryza , Densidade Demográfica , Ensaios Clínicos Controlados Aleatórios como Assunto , Estações do Ano
9.
Malar J ; 18(1): 55, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808348

RESUMO

BACKGROUND: Biotic and abiotic factors have been reported to affect the larvicidal efficacy of Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs), although the extent to which they are affected has been poorly documented. This paper studies the effect of sunlight exposure on the efficacy of a new larvicide formulation based on both Bti and Bs, herein after referred to as BTBSWAX, applied against two different larval stages. METHODS: The emergence of inhibition exhibited by BTBSWAX at three different dosages (1 g/m2, 1.5 g/m2, and 2 g/m2) was monitored under semi-field conditions using a total of 32 containers comprising 16 that were covered and 16 that were uncovered. Two experiments were conducted using first- and second-instar larvae of Anopheles gambiae, respectively. RESULTS: BTBSWAX at 2 g/m2 in covered containers exhibited high emergence inhibition (> 80%) when larvae were exposed from 1st instar on day-6 post-treatment, whereas the emergence inhibition was only 28% in uncovered containers. For larvae exposed from 1st instar on day-12 post-treatment, the emergence inhibition was moderate (70%) in covered containers but was low (< 20%) in uncovered containers. For larvae exposed from 2nd instar on day-10 post-treatment, the emergence inhibition was moderate (31%) in covered containers but was very low (< 10%) in uncovered containers. Moreover, the residual efficacy of BTBSWAX was markedly affected by environmental stresses, including sunlight exposure (Hazard ratio (HR) = 0.12, p < 0.001 and HR = 0.63, p = 0.033 for BTBSWAX at 2 g/m2 against 1st and 2nd instar larvae, respectively). CONCLUSION: These findings emphasize the impact of environmental variables (e.g., sunlight exposure) on the residual efficacy of Bti and Bs biolarvicides in the field. They hence highlight the need to take these factors into account for larvicide formulation development processes. Moreover, studies of the ecology of Anopheles larvae in targeted areas are also crucial for the integration of larval control strategies into malaria transmission plans devised by national malaria control programmes of endemic countries.


Assuntos
Anopheles/fisiologia , Bacillus/patogenicidade , Bacillus/efeitos da radiação , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Luz Solar , Animais , Anopheles/microbiologia , Bioensaio , Feminino , Larva/microbiologia , Larva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...