Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-4, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270464

RESUMO

This pioneering study explores the structural intricacies of therapeutic ß-glucan in Shiitake (Lentinula edodes), i.e. Lentinan (LNT). Lentinan, a neutral polysaccharide [ß-(1,3; 1,6) glucan], exists in three forms; single, double, and triple-helical, but conformation-dependent bioactivity studies are lacking. In this context, we meticulously assessed indigenous Shiitake accessions from Northeast India, unveiling the conformational spectrum of LNT through an innovative pipeline. The experiment approached the simultaneous estimation of total glucan (TG), triple helical glucan (THG), and single-double helical glucan (SDG). Profiling revealed the exceptional LNT content in DMRO-623 (TG: 46.74%, SDG: 9.34%, THG: 37.39%) which emerged as the highest documented to date. Beyond the culinary delight, this research and the novel approach to LNT quantification will create a pivotal platform for advanced mushroom research, offering prospects for novel discoveries, innovative applications, and therapeutic potential.

2.
Mol Biol Rep ; 50(8): 6569-6578, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37338735

RESUMO

BACKGROUND: Tribolium castaneum causes substantial damage to stored grains, leading to economic losses. The present study evaluates phosphine resistance in adult and larval stages of T. castaneum from north and northeast India, where continuous and long-term phosphine use in large-scale storage conditions intensifies resistance, posing risks to grain quality, safety, and industry profitability. METHODS AND RESULTS: This study utilized T. castaneum bioassays and CAPS markers restriction digestion methodology to assess resistance. The phenotypic results indicated a lower LC50 value in larvae compared to adults, while the resistance ratio remained consistent across both stages. Similarly, the genotypic analysis revealed comparable resistance levels regardless of the developmental stage. We categorized the freshly collected populations based on resistance ratios, with Shillong showing weak resistance, Delhi and Sonipat displaying moderate resistance, and Karnal, Hapur, Moga, and Patiala exhibiting strong resistance to phosphine. Further validation by accessing findings and exploring the relationship between phenotypic and genotypic variations using Principal Component Analysis (PCA). This comprehensive study enhances our understanding of T. castaneum resistance levels, providing valuable insights for the development of targeted pest management strategies. CONCLUSION: This study provides insights into the current phenotypic and genotypic resistance levels of T. castaneum in North and North East India. Understanding this is crucial for developing effective pest management strategies and future research on biological and physiological aspects of phosphine resistance in insects, enabling the formulation of effective management practices. Addressing phosphine resistance is vital for sustainable pest management and the long-term viability of the agricultural and food industries.


Assuntos
Inseticidas , Tribolium , Animais , Tribolium/genética , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Larva/genética , Índia
3.
Antioxidants (Basel) ; 12(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36829830

RESUMO

Susceptibility to phosphine was compared in 15 populations of lesser grain borer (Rhyzopertha dominica) collected from grain storage godowns across India. A high level of resistance to phosphine was noticed in R. dominica collected from northern India compared to those collected from northeastern regions of India. The median lethal concentration values varied from 0.024 mg/L to 1.991 mg/L, with 1.63 to 82.96-fold resistance compared to laboratory susceptible checks. Antioxidant enzymes have been reported to negate the reactive oxygen species generated upon encountering the fumigant phosphine. Distinct differences in the activity of antioxidant enzymes were noticed in the field populations exposed to phosphine. Peroxidase activity varied between 1.28 and 336.8 nmol H2O2 reduced/min/mg protein. The superoxide dismutase inhibition rate was between 81.29 and 99.66%, and catalase activity varied between 6.28 and 320.13 nmol H2O2 reduced/min/mg protein. The findings of our investigation show that the activities of peroxidase and superoxide dismutase are positively linked (p < 0.01) with an increase in resistance ratios, whereas catalase was found to have a negative association with resistance to phosphine. The reported results elucidate the differential activities of principal antioxidant enzymes in scavenging the oxyradicals (O2•-, H2O2,•OH) associated with tolerance to phosphine in R. dominica.

4.
Sci Rep ; 13(1): 795, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646750

RESUMO

Raffinose family oligosaccharides (RFOs) are known to have important physiological functions in plants. However, the presence of RFOs in legumes causes flatulence, hence are considered antinutrients. To reduce the RFOs content to a desirable limit without compromising normal plant development and functioning, the identification of important regulatory genes associated with the biosynthetic pathway is a prerequisite. In the present study, through comparative RNA sequencing in contrasting genotypes for seed RFOs content at different seed maturity stages, differentially expressed genes (DEGs) associated with the pathway were identified. The DEGs exhibited spatio-temporal expression patterns with high RFOs variety showing early induction of RFOs biosynthetic genes and low RFOs variety showing a late expression at seed maturity. Selective and seed-specific differential expression of raffinose synthase genes (AhRS14 and AhRS6) suggested their regulatory role in RFOs accumulation in peanut seeds, thereby serving as promising targets in low RFOs peanut breeding programs. Despite stachyose being the major seed RFOs fraction, differential expression of raffinose synthase genes indicated the complex metabolic regulation of this pathway. The transcriptomic resource and the genes identified in this study could be studied further to develop low RFOs varieties, thus improving the overall nutritional quality of peanuts.


Assuntos
Arachis , Melhoramento Vegetal , Rafinose/metabolismo , Arachis/genética , Arachis/metabolismo , Oligossacarídeos/metabolismo , Sementes/metabolismo
5.
3 Biotech ; 13(2): 52, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36685322

RESUMO

Isoflavones are a sub-class of phenylpropanoids having health benefits and a role in plant defence and plant-rhizobium interaction. Isoflavone conjugate hydrolysis is crucial in determining the bioactivity and bioavailability of these isoflavones inside the human body. This study examined the different characteristics of soy isoflavone conjugate hydrolysing ß-glucosidase (GmICHG) to explore its potential for isoflavone bioavailability enhancement. We cloned the full-length GmICHG cDNA from the soybean seedling roots from the DS2706 variety of 1545 bp. The bioinformatics analysis revealed secretion and glycosylation of this protein. The evolutionary relatedness of this gene to the other glucosidases interestingly had related sequences outside the Papilionaceae family. The protein had a pI above neutral of 7.62 and optimum pH of 6.0, indicating its activity in the extracellular acidic environment. The GmICHG gene expression at three stages of seedling roots gradually rose to 1.84 ± 0.54 fold and a concomitant increase in the ß-glucosidase activity. The enzyme kinetics of GmICHG showed a K m of 6.38 mM and V max of 2.82 U/ml and an optimum temperature of 40 °C. These hint that soy ICHG can be a potent candidate for the isoflavone bioavailability enhancement by hydrolysing their ß-glycosidic bonds. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03427-5.

6.
Crit Rev Food Sci Nutr ; 63(29): 9995-10013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35611888

RESUMO

In the world of highly processed foods, special attention is drawn to the nutrient composition and safety of consumed food products. Foods fortified with probiotic bacteria confer beneficial effects on human health and are categorized as functional foods. The salubrious activities of probiotics include the synthesis of vital bioactives, prevention of inflammatory diseases, anticancerous, hypocholesterolemic, and antidiarrheal effects. Soy foods are exemplary delivery vehicles for probiotics and prebiotics and there are diverse strategies to enhance their functionality like employing mixed culture fermentation, engineering probiotics, and incorporating prebiotics in fermented soy foods. High potential is ascribed to the concurrent use of probiotics and prebiotics in one product, termed as "synbiotics," which implicates synergy, in which a prebiotic ingredient particularly favors the growth and activity of a probiotic micro-organism. The insights on emended bioactive profile, metabolic role, and potential health benefits of advanced soy-based probiotic and synbiotic hold a promise which can be profitably implemented to meet consumer needs. This article reviews the available knowledge about strategies to enhance the nutraceutical potential, mechanisms, and health-promoting effects of advanced soy-based probiotics. Traditional fermentation merged with diverse strategies to improve the efficiency and health benefits of probiotics considered vital, are also discussed.


Assuntos
Alimentos Fermentados , Probióticos , Alimentos de Soja , Simbióticos , Humanos , Prebióticos
7.
Food Technol Biotechnol ; 61(4): 514-522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205057

RESUMO

Research background: Soybean (Glycine max (L.) Merr) is a nutrient-rich crop with a high protein content and various bioactive compounds with health-promoting properties. Nevertheless, it is poorly accepted as a food by consumers due to its off-flavour. Due to the ubiquitous presence of isoflavones in soybeans, their inherent antioxidant potential and inhibitory effect on lipoxygenase activity, their sensory properties are currently being considered to mitigate the off-flavour. Experimental approach: In the present study, the content and composition of isoflavones in 17 soybean cultivars are determined. The correlation between the isoflavone mass fraction and lipid peroxidation was also established, using thiobarbituric acid (TBA) value and carbonyl compound concentration as indices for the development of off-flavour. Cloning, gene expression analysis and in silico analysis of isoflavone synthase isoforms (IFS1 and IFS2) were also performed. Results and conclusions: The total isoflavone mass fraction in soybean genotypes ranged from (153.5±7.2) µg/g for PUSA 40 to (1146±43) µg/g for Bragg. There was a moderately negative correlation between the indices of off-flavour formation and the genistein/daidzein ratio (p<0.1). However, the correlation with total isoflavone mass fraction was found to be insignificant, indicating complex interactions. Higher protein-protein interactions for the predicted structure of IFS2 with other biosynthesis enzymes and its comparatively higher expression in the Bragg than that of IFS1 indicated its more important role in isoflavone synthesis. Novelty and scientific contribution: The genistein/daidzein mass ratio was found to be an important factor in controlling off-flavour. IFS2 was identified as key to produce soybeans with high isoflavone mass fraction and potentially lower off-flavour formation.

8.
PLoS One ; 17(10): e0275342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301967

RESUMO

The entomopathogenic nematode, Heterorhabditis indica, is a popular biocontrol agent of high commercial significance. It possesses tremendous genetic architecture to survive desiccation stress by undergoing anhydrobiosis to increase its lifespan-an attribute exploited in the formulation technology. The comparative transcriptome of unstressed and anhydrobiotic H. indica revealed several previously concealed metabolic events crucial for adapting towards the moisture stress. During the induction of anhydrobiosis in the infective juveniles (IJ), 1584 transcripts were upregulated and 340 downregulated. As a strategy towards anhydrobiotic survival, the IJ showed activation of several genes critical to antioxidant defense, detoxification pathways, signal transduction, unfolded protein response and molecular chaperones and ubiquitin-proteasome system. Differential expression of several genes involved in gluconeogenesis - ß-oxidation of fatty acids, glyoxylate pathway; glyceroneogenesis; fatty acid biosynthesis; amino-acid metabolism - shikimate pathway, sachharopine pathway, kyneurine pathway, lysine biosynthesis; one-carbon metabolism-polyamine pathway, transsulfuration pathway, folate cycle, methionine cycle, nucleotide biosynthesis; mevalonate pathway; and glyceraldehyde-3-phosphate dehydrogenase were also observed. We report the role of shikimate pathway, sachharopine pathway and glyceroneogenesis in anhydrobiotes, and seven classes of repeat proteins, specifically in H. indica for the first time. These results provide insights into anhydrobiotic survival strategies which can be utilized to strengthen the development of novel formulations with enhanced and sustained shelf-life.


Assuntos
Nematoides , Transcriptoma , Animais , Dessecação , Nematoides/fisiologia , Metabolismo dos Carboidratos
9.
Food Chem (Oxf) ; 5: 100116, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35818381

RESUMO

Plant bioregulators (PBRs) regulate developmental and physiological processes in plants. In this study, biochemical and transcriptomic analyses were conducted to evaluate the influence of PBRs [abscisic acid (ABA), benzothiadiazole (BTH), ethephon, and prohexadione-calcium (Pro-Ca)] on the grapevine cv. Flame Seedless under semi-arid subtropics. This study aims to see the effect of exogenous application of PBRs on overall berry quality, including uniformity of berry color. Uniform colored berries, the maximum total soluble solids (TSS) and total antioxidant activity (TAoA), and the highest total phenolics (TPC) and flavonoids (TFC) contents were obtained with the treatments, namely, 400 mg L-1 ethephon and 400 mg L-1 ABA. Further, RNA-Seq analysis has also identified some key DEGs like UFGT (VIT_16s0039g02230), GST (VIT_04s0079g00690), and chalcone synthase (CHS) (VIT_05s0136g00260) which were part of the anthocyanin biosynthesis pathway controlling grape berries color. Thus, ethephon (400 mg L-1) and ABA (400 mg L-1) were found promising for attaining greater uniformity in berry color development because of increased total anthocyanins content. In addition, they were also found associated with enhanced TAoA, TPC, and TFC. Hence, ethephon and ABA can be recommended for improving the berry quality.

10.
J Sci Food Agric ; 102(12): 5561-5567, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35426150

RESUMO

BACKGROUND: Like other natural pigments, betalains have a stability problem. Copigmentation can be explored to address this issue. In this study, black carrot anthocyanins were used for the first time as copigment with betalains so that copigmented betalains with enhanced stability could be developed to withstand deteriorative processing and storage conditions. RESULTS: Increase in hyperchromic and bathochromic shift with subsequent increase in black carrot anthocyanin extract (0.250 g L-1 ) addition from 0.2 to 1.0 mL L-1 was observed in native betalain pigments from 0.28 to 1.90 and 538 nm to 564 nm, respectively. For maximum recorded bathochromic shift, 0.8 mL L-1 addition of copigment was optimized. Copigmented betalain pigment showed better stability in comparison with native pigment, when exposed to light, temperature more than 60 °C and ≥1.0 g L-1 NaCl. At constant incubation time (3 h), copigmented betalains degraded up to 20.79-41.43% whereas the non-copigmented counterpart degraded up to 83.49-86.86% at 60, 75 and 90 °C, respectively. Lower rate constant (k) and enhanced activation energy (Ea ) showed higher thermostability of copigmented betalains. With constant light exposure, the half-life value of betalains was 145.2 h, which increased approximately twofold (274.08 h) after copigmentation. The t1/2 of betalain pigment at 10%, 15% and 18% salt addition was 81.12, 75.36 and 83.52 h, which increased to 186.96, 226.56 and 152.88 h after copigmentation. CONCLUSION: These findings support that black carrot anthocyanin is a potential and compatible copigment for water-soluble betalain pigment that enhances stability of betalains under extreme processing conditions. © 2022 Society of Chemical Industry.


Assuntos
Antocianinas , Betalaínas , Antocianinas/metabolismo , Cor , Verduras/metabolismo
11.
Food Chem ; 385: 132636, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339804

RESUMO

Millets are recently being recognized as emerging food ingredients with multifaceted applications. Whole grain flours made from millets, exhibit diverse chemical compositions, starch digestibility and physicochemical properties. A food matrix can be viewed as a section of food microstructure, commonly coinciding with a physical spatial domain that interacts or imparts specific functionalities to a particular food constituent. The complex millet-based food matrices can help individuals to attain nutritional benefits due to the intricate and unique digestive properties of these foods. This review helps to fundamentally understand the binary and ternary interactions of millet-based foods. Nutritional bioavailability and bioaccessibility are also discussed based on additive, synergistic, masking, the antagonistic or neutralizing effect of different food matrix components on each other and the surrounding medium. The molecular basis of these interactions and their effect on important functional attributes like starch retrogradation, gelling, pasting, water, and oil holding capacity is also discussed.


Assuntos
Grão Comestível , Milhetes , Grão Comestível/química , Farinha/análise , Humanos , Milhetes/química , Amido/química , Grãos Integrais
12.
Food Chem ; 353: 129431, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714109

RESUMO

Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.


Assuntos
Química Verde , Extratos Vegetais/química , Plantas/química , Antocianinas/química , Antocianinas/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Micro-Ondas , Fenóis/química , Fenóis/isolamento & purificação , Plantas/metabolismo , Extração em Fase Sólida
13.
Curr Med Chem ; 28(28): 5831-5846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33530901

RESUMO

Skeletal muscle atrophy has been characterized as a state of uncontrolled inflammation and oxidative stress that escalates protein catabolism. Recent advancement supports impinging signaling molecules in the muscle fibers controlled through toll-like receptors (TLR). Activated TLR signaling pathways have been identified as inhibitors of muscle mass and provoke the settings for muscle atrophy. Among them, mainly TLR2 and TLR4 manifest their presence to exacerbate the release of the pro-inflammatory cytokine to deform the synchronized muscle programming. The present review enlightens the TLR signaling mediated muscle loss and the interplay between inflammation and skeletal muscle growth.


Assuntos
Atrofia Muscular , Receptores Toll-Like , Citocinas , Humanos , Músculo Esquelético , Atrofia Muscular/patologia , Transdução de Sinais
14.
J Ethnopharmacol ; 267: 113510, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141056

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (TC) is being used as a blood purifier in Ayurveda since ancient time. It is a very popular immunomodulator and holds anti-inflammatory and anti-oxidative potential, hence anti-aging properties. Therefore, it is also known as 'Amrita' in Ayurveda and is widely used to treat diabetes mellitus type II (T2DM) and its secondary complications; however, its underlying mechanism was not expedited to date. AIM-: To explore the in vivo therapeutic efficiency and mechanism of action of TC and its secondary constitute magnoflorine on the skeletal muscle atrophy in the rat model of T2DM. METHOD: Animal model of T2DM was developed using streptozotocin (STZ) injection followed by intervention with TC, metformin, and magnoflorine for three weeks. Confirmation of T2DM and abrogation of atrophic markers and possible mechanisms on supplementation of TC and magnoflorine were explored using histology, bio-assays, Western blotting, and q-PCR. RESULT: TC and Magnoflorine supplementations significantly (p ≤ 0.05) decreased the fasting blood glucose (FBG) levels in T2DM rats. Both treatments prevented the lean body, individual skeletal muscle mass, and myotubes diameter loss (p ≤ 0.05). Magnoflorine significantly reduced the degradation of the protein indicated by biochemical markers of atrophy i.e. decreased serum creatine kinase (CK) levels and increased myosin heavy chain-ß (MyHC-ß) levels in muscles. Q-PCR and western blotting supported the findings that magnoflorine significantly increased the mRNA and protein abundances (~3 fold) of MyHC-ß.TC and magnoflorine efficiently decreased the expression of ubiquitin-proteasomal E3-ligases (Fn-14/TWEAK, MuRF1, and Atrogin 1), autophagy (Bcl-2/LC3B), and caspase related genes along with calpains activities in T2DM rats. Both TC and magnoflorine also increased the activity of superoxide dismutase, GSH-Px, decreased the activities of ß-glucuronidase, LPO, and prevented any alteration in the catalase activity. In contrast, magnoflorine increased expression of TNF-α and IL-6 whereas TC and metformin efficiently decreased the levels of these pro-inflammatory cytokines (p ≤ 0.05). However, magnoflorine was found to increase phosphorylation of Akt more efficiently than TC and metformin. CONCLUSION: TC, and magnoflorine are found to be effective to control fasting blood glucose levels significantly in T2DM rats. It also promoted the Akt phosphorylation, suppressed autophagy and proteolysis that might be related to blood glucose-lowering efficacy of magnoflorine and TC. However, increased muscle weight, specifically of the soleus muscle, expression of IL-6, and slow MyHC indicated the increased myogenesis in response to magnoflorine and independent from its hypoglycemic activity.


Assuntos
Anti-Inflamatórios/farmacologia , Aporfinas/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Transcrição Forkhead/metabolismo , Hipoglicemiantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Cadeias Pesadas de Miosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/enzimologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Cadeias Pesadas de Miosina/genética , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos Wistar , Transdução de Sinais , Estreptozocina
15.
Physiol Plant ; 171(4): 785-801, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33280130

RESUMO

The ATP-binding cassette (ABC) transporters belong to a large protein family predominantly present in diverse species. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. These proteins are localized in the membranes of chloroplasts, mitochondria, peroxisomes and vacuoles. ABC proteins are involved in regulating diverse biological processes in plants, such as growth, development, uptake of nutrients, tolerance to biotic and abiotic stresses, tolerance to metal toxicity, stomatal closure, shape and size of grains, protection of pollens, transport of phytohormones, etc. In mitochondria and chloroplast, the iron metabolism and its transport across the membrane are mediated by ABC transporters. Tonoplast-localized ABC transporters are involved in internal detoxification of metal ion; thus protecting against the DNA impairment and maintaining cell growth. ABC transporters are involved in the transport of secondary metabolites inside the cells. Microorganisms also engage a large number of ABC transporters to import and expel substrates decisive for their pathogenesis. ABC transporters also suppress the seed embryonic growth until favorable conditions come. This review aims at giving insights on ABC transporters, their evolution, structure, functions and roles in different biological processes for helping the terrestrial plants to survive under adverse environmental conditions. These specialized plant membrane transporters ensure a sustainable economic yield and high-quality products, especially under unfavorable conditions of growth. These transporters can be suitably manipulated to develop 'Plants for the Future'.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Plantas , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Homeostase , Plantas/metabolismo , Estresse Fisiológico
16.
3 Biotech ; 10(3): 110, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32099748

RESUMO

Gamma-tocopherol methyltransferase (γ-TMT) converts γ-toc to α-toc-the rate limiting step in toc biosynthesis. Sequencing results revealed that the coding regions of γ-TMT1 and γ-TMT3 were strongly similar to each other (93% at amino acid level). Based on the differences in the N-terminal amino acids, Glycine max-γ-TMT proteins are categorized into three isoforms: γ-TMT1, 2 and 3. In silico structural analysis revealed the presence of chloroplast transit peptide (cTP) in γ-TMT1 and γ-TMT3 protein. However, other properties of transit peptide like presence of hydrophobic amino acids at the first three positions of N-terminal end and lower level of acidic amino acids were revealed only in γ-TMT3 protein. Subcellular localization of GFP fused γ-TMT1 and γ-TMT3 under 35S promoter was studied in Nicotiana benthamiana using confocal microscopy. Results showed that γ-TMT1 was found in the cytosol and γ-TMT3 was found to be localized both in cytosol and chloroplast. Further the presence γ-TMT3 in chloroplast was validated by quantifying α-tocopherol through UPLC. Thus the present study of cytosolic localization of the both γ-TMT1 and γ-TMT3 proteins and chloroplastic localization of γ-TMT3 will help to reveal the importance of γ-TMT encoded α-toc in protecting both chloroplastic and cell membrane from plant oxidative stress.

17.
Plant Physiol Biochem ; 144: 375-385, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31622940

RESUMO

Soybeans are known for its good source of protein (40%), oil (20%) and also serve as a source of nutraceutical compounds including tocopherols (toc). To know the molecular basis of differential α-toc accumulation in two contrasting soybean genotypes: DS74 (low α-toc - 1.36 µg/g and total-toc -29.72 µg/g) and Bragg (high α-toc - 10.48 µg/g and total-toc 178.91 µg/g), the analysis of γ-TMT3 promoter activity and its methylation patterns were carried out. The sequencing results revealed nucleotide variation between Bragg:γ-TMT3-P and DS74:γ-TMT3-P, however none of the variations were found in core-promoter region or in cis-elements. The histochemical GUS assay revealed higher promoter activity of Bragg:γ-TMT3-P than that of DS74:γ-TMT3-P and correlated with significantly higher and lower (P < 0.05) expression of γ-TMT3 gene respectively. To know the molecular basis of differential accumulation of α-toc in these contrasting soybean genotypes, the DNA methylation pattern of γ-TMT3 gene body and its promoter was studied in both varieties. The results showed higher percentage (62.5%) of methylation in DS74:γ-TMT3-P than in Bragg:γ-TMT3-P (50%). Out of all the methylation sites in the promoter region, one of methylation site was found at CAAT box (-190 bp) of DS74:γ-TMT3-P. Further gene body methylation patterns revealed lowest % (40%) of CG methylation in DS74:γ-TMT3 gene as compared to Bragg:γ-TMT3 (64.2%). Thus our study revealed that, expression of γ-TMT3 gene was influenced by its promoter activity and methylation patterns in cis-elements of γ-TMT3 promoter and gene body. This study will help us to understand the possible role of methylation and promoter activity in determining the α-toc content in soybean seeds.


Assuntos
Glycine max/metabolismo , Tocoferóis/metabolismo , alfa-Tocoferol/metabolismo , gama-Tocoferol/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Regiões Promotoras Genéticas/genética
18.
Int J Biol Macromol ; 135: 1070-1081, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176863

RESUMO

The present study compares three methods viz. microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE) and conventional solvent extraction (CSE) for extraction of polyphenolic compounds from Black Soybean Seed coat (BSSC). Box-Behnken design using response surface methodology (RSM) was employed to investigate and optimize the MAE and EAE for maximum bioactive content, antioxidant activity, colour density and minimum degradation parameters from BSSC. Optimized MAE conditions for BSSC were: microwave power of 569.46 W, extraction time of 262.54 s, solvent to solid ratio of 40:1 and ethanol concentration (59.99). The predicted anthocyanin content was 5021.47 mg/l, close to experimental optimized value of 5094.9 mg/l with minimum values of degradation parameters viz., Polymeric Colour (PC) (0.131 ±â€¯0.01), Browning Index (BI) (0.202 ±â€¯0.02) and Degradation Index (DI) (0.140 ±â€¯0.02). Overall results clearly indicate that MAE is the best suited method for extraction in comparison to EAE and CSE. The phenolic rich extract can be used as an effective functional ingredient in foods.


Assuntos
Antocianinas/química , Antocianinas/isolamento & purificação , Enzimas/química , Glycine max/química , Micro-Ondas , Fenóis/química , Fenóis/isolamento & purificação , Sementes/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Modelos Químicos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
19.
Mol Biol Rep ; 46(4): 3713-3730, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31012027

RESUMO

Despite the significant importance of soybean isoflavone, the regulatory mechanism of miRNAs during its biosynthesis is highly unexplored. In the present work, nine existing miRNAs along with their ten corresponding target genes were identified and validated in soybean for their possible role during isoflavonoid biosynthesis and accumulation. Temporal expression analysis at four key stages of seed development (35, 45, 55 and 65DAF) of all the miRNA-target pairs showed varying degree of differential accumulation in two soybean genotypes (NRC37: high isoflavone; and NRC7: low isoflavone). Differential expression of MYB65-Gma-miR159, MYB96-Gma-miRNA1534, MYB176-Gma-miRNA5030, SPL9-Gma-miRNA156, TCP3, TCP4-Gma-miRNA319, WD40-Gma-miRNA162, UDP-glucose: flavonoid 3-O-glucosyltransferase-Gma-miRNA396, and CHI3-Gma-miRNA5434 showed an important relationship with their targets in both the soybean genotypes across all the stages. Therefore, the finding of the present work would certainly increase our understanding of molecular regulation of isoflavone biosynthetic pathway mediated by the miRNA which would guide molecular breeder to develop isoflavone rich soybean cultivars.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Isoflavonas/biossíntese , MicroRNAs/genética , Fatores de Transcrição/genética , Vias Biossintéticas/genética , Genótipo , Isoflavonas/metabolismo , MicroRNAs/metabolismo , Sementes/genética , Glycine max/metabolismo , Fatores de Transcrição/metabolismo
20.
DNA Cell Biol ; 38(6): 510-520, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31017480

RESUMO

Plants, being sessile organisms, have evolved several dynamic mechanisms of gene regulation. Epigenetic modification especially cytosine methylation and demethylation actively regulates the expression of genes. To understand the role of cytosine methylation during isoflavonoid biosynthesis and accumulation, we performed cytosine methylation analysis in the coding region of two isoforms IFS1 and IFS2 gene, in two contrasting soybean genotypes differing in total isoflavone content (NRC37: high isoflavone; and NRC7: low isoflavone). The results indicated increased 5-mC in both the isoforms in NRC37 (∼20.51% in IFS2 and ∼85% in IFS1) compared with NRC7 (∼7.8% in IFS2 and ∼2.5% in IFS1) genotype, which signifies the positive role of 5-mC in the coding region of the gene leading to enhanced expression. In addition, temporal expression profiling [35 days after flowering (DAF), 45, 55, and 65 DAF] of both the isoforms showed increasing trend of accumulation in both the genotypes with maximum in NRC37 at 65 DAF. To further establish a correlation between methylation and expression of transcripts, we quantified the different isoforms of isoflavone in both the genotypes across all the stages. Therefore, the finding of this study would certainly increase our understanding of epigenetic regulation of isoflavone biosynthetic pathway mediated by the cytosine methylation that would assist molecular breeders to get high-performing soybean genotypes with better isoflavone yield.


Assuntos
Citosina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Oxigenases/genética , Simulação por Computador , Genótipo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoflavonas/biossíntese , Oxigenases/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Glycine max/embriologia , Glycine max/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...