Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606881

RESUMO

Photocatalysis offers a direct, yet robust, approach to eradicate pathogenic bacteria. However, the practical implementation of photocatalytic disinfection faces a significant challenge due to low-efficiency photogenerated carrier separation and transfer. Here, we present an effective approach to improve photocatalytic disinfection performance by exploiting the pyro-phototronic effect through a synergistic combination of pyroelectric properties and photocatalytic processes. A set of comprehensive studies reveals that the temperature fluctuation-induced pyroelectric field promotes photoexcited carrier separation and transfer and thus facilitates the generation of reactive oxygen species and ultimately enhances photocatalytic disinfection performance. It is worth highlighting that the constructed film demonstrated an exceptional antibacterial efficiency exceeding 95% against pathogenic bacteria under temperature fluctuations and light irradiation. Moreover, the versatile modulation role of the pyro-phototronic effect in boosting photocatalytic disinfection was corroborated. This work paves the way for improving photocatalytic disinfection efficiency by harnessing the synergistic potential of various inherent material properties.

2.
Nanoscale ; 15(44): 17839-17849, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37882243

RESUMO

Realizing precise therapy for glioblastomas (GBMs), a kind of high-frequency malignant brain tumor, is of great importance in improving the overall survival (OS) of patients. With relentless efforts made in the past few years, a sponge medium has been introduced into concurrent tumor treating fields (TTFields) and radiotherapy to enhance therapy efficacy for GBMs, and some progresses have been witnessed. However, the specific physical and chemical characteristics of the sponge that can be used for GBMs have not been reported as far as we know. Therefore, this study aims to develop a simple yet robust method to select a candidate sponge medium and verify its safety in advanced concurrent TTFields and radiotherapy for GBMs through interdisciplinary investigation among materials science, medical physics, and clinical radiation oncology. Significantly, latex-free polyurethane (PU) sponges with a Hounsfield unit (HU) value lower than -750, which exhibit almost no negative influence on planning computed tomography (CT) imaging and radiotherapy dosimetry, are demonstrated to be available for concurrent TTFields and radiotherapy for GBMs. Moreover, in clinical research, the achieved clear CT images, negligible scalp toxicity, lower residual positioning errors, and high compliant rate of 82% over the selected representative sponge sample corroborate the availability and safety of PU sponges in practical applications for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Radioterapia (Especialidade) , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia
3.
Adv Mater ; 35(14): e2210914, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36638334

RESUMO

The past several years has witnessed significant progress in enhancing photocatalytic performance via robust electric and magnetic fields' modulation to promote the separation and transfer of photoexcited carriers, and phase control at reactive interface to lower photocatalytic reaction energy barrier and facilitate mass transfer. These three research directions have received soaring attention in photocatalytic field. Herein, recent advances in photocatalysis modulated by electric field (i.e., piezoelectric, pyroelectric, and triboelectric fields, as well as their coupling) with specific examples and mechanisms discussion are first examined. Subsequently, the strategy via magnetic field manipulation for enhancing photocatalytic performance is scrutinized, including the spin polarization, Lorentz force, and magnetoresistance effect. Afterward, materials with tailored structure and composition design enabled by reactive phase control and their applications in photocatalytic hydrogen evolution and carbon dioxide reduction are reviewed. Finally, the challenges and potential opportunities to further boost photocatalytic efficiency are presented, aiming at providing crucial theoretical and experimental guidance for those working in photocatalysis, ferroelectrics, triboelectrics, piezo-/pyro-/tribo-phototronics, and electromagnetics, among other related areas.

4.
Small ; 19(18): e2207467, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36634976

RESUMO

Utilization of low-energy photons for efficient photocatalysis remains a challenging pursuit. Herein, a strategy is reported to boost the photocatalytic performance, by promoting low-energy photons dual harvest through bimodal surface plasmon resonance (SPR)-enhanced synergistically upconversion and pyroelectricity. It is achieved by introducing triplet-triplet annihilation upconversion (TTA-UC) materials and plasmonic material (Au nanorods, AuNRs) into composite fibers composed of pyroelectric substrate (poly(vinylidene fluoride)) and photocatalyst Cd0.5 Zn0.5 S. Interestingly, the dual combination of TTA-UC and AuNRs SPR in the presence of polyvinylidene fluoride substrate with pyroelectric property promotes the photocatalytic hydrogen evolution performance by 2.88 folds with the highest average apparent quantum yield of 7.0% under the low-energy light (λ > 475 nm), which far outweighs the role of separate application of TTA-UC (34%) and AuNRs SPR (76%). The presence of pyroelectricity plays an important role in the built-in electric field as well as the accordingly photogenerated carrier behavior in the composite photocatalytic materials, and the pyroelectricity can be affected by AuNRs with different morphologies, which is proved by the Kelvin probe force microscopy and photocurrent data. This work provides a new avenue for fully utilizing low-energy photons in the solar spectrum for improving photocatalytic performance.

5.
Sci Bull (Beijing) ; 67(8): 779-783, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546229
6.
Adv Sci (Weinh) ; 9(28): e2203057, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35957518

RESUMO

Mass transfer is an essential factor determining photocatalytic performance, which can be modulated by fluid field via manipulating the kinetic characteristics of photocatalysts and photocatalytic intermediates. Past decades have witnessed the efforts and achievements made in manipulating mass transfer based on photocatalyst structure and composition design, and thus, a critical survey that scrutinizes the recent progress in this topic is urgently necessitated. This review examines the basic principles of how mass transfer behavior impacts photocatalytic activity accompanying with the discussion on theoretical simulation calculation including fluid flow speed and pattern. Meanwhile, newly emerged viable photocatalytic micro/nanomotors with self-thermophoresis, self-diffusiophoresis, and bubble-propulsion mechanisms as well as magnet-actuated photocatalytic artificial cilia for facilitating mass transfer will be covered. Furthermore, their applications in photocatalytic hydrogen evolution, carbon dioxide reduction, organic pollution degradation, bacteria disinfection and so forth are scrutinized. Finally, a brief summary and future outlook are presented, providing a viable guideline to those working in photocatalysis, mass transfer, and other related fields.


Assuntos
Dióxido de Carbono , Desinfecção , Bactérias , Catálise , Hidrogênio
7.
J Phys Chem Lett ; 13(29): 6721-6730, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35849530

RESUMO

Recently, silver nanoparticles (AgNPs) have been widely applied in sterilization due to their excellent antibacterial properties. However, AgNPs require rigorous storage conditions because their antibacterial performances are significantly affected by environmental conditions. Instant fabrication provides a remedy for this drawback. In this study, we propose a self-powered electrodeposition system to synthesize sub-10-nm AgNPs, consisting of a triboelectric nanogenerator (TENG) as the self-powered source, a capacitor for storing electrical energy from the TENG, and an electrochemical component for electrodeposition. The self-powered system with larger capacitance and discharging voltage tends to deliver smaller AgNPs due to the nucleation mechanism dominated by current density. Furthermore, antibacterial tests reveal that compared to direct current (DC) electrodeposition, the TENG-based electrodeposition can synthesize finer-sized AgNPs (<10 nm) with overwhelming antibacterial effect against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (with 100% efficiency at 2 h). This work provides a new strategy for the self-powered, instant, and controllable electrodeposition of nanoparticles.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Galvanoplastia , Escherichia coli , Nanopartículas Metálicas/química , Prata/química , Staphylococcus aureus
8.
Chem Soc Rev ; 50(24): 13646-13691, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34821246

RESUMO

The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage.

9.
J Phys Chem Lett ; 11(17): 7407-7416, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32794709

RESUMO

The intrinsic internal electric field in a ferroelectric photocatalyst is beneficial for improving the photocatalytic properties because of its positive effect on the separation and migration of photogenerated carriers. However, this kind of internal electric field is static and easily saturated by inner and outer shielding effects, seriously restricting its potential in photocatalysis. To overcome this problem, a sustainable internal electric field was introduced into photocatalysis based on piezoelectric and pyroelectric effect, which exhibits good capability in consistently boosting photocatalytic activity, thus becoming a hot research topic. In this Perspective we summarize the recent significant progress in the construction of sustainable internal electric fields for facilitating photocatalysis from material design to energy utilization. Moreover, the fascinating influence of sustainable internal electric fields on carrier behavior is also discussed. Finally, a summary and outlook for building a sustainable internal electric field to further enhance photocatalytic performance are provided.

10.
Adv Mater ; 32(12): e1906361, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32048360

RESUMO

Infrared light, more than 50% of the solar light energy, is long-termly ignored in the photocatalysis field due to its low photon energy. Herein, infrared-light-responsive photoinduced carriers driver is first constructed taking advantage of pyroelectric effect for enhancing photocatalytic hydrogen evolution. In order to give full play to its role, the photocatalytic reaction is localized on the surface and interface of the composite based on a new semi-immersion type heat collected photocatalytic microfiber system. The system is consisted of distinctive pyroelectric substrate poly(vinylidene fluoride-co-hexafluropropylene (PVDF-HFP), typical photothermal material carbon nanotube (CNT), and representative photocatalyst CdS. The transient photocurrent, electrochemical impedance spectroscopy, time-resolved photoluminescence and pyroelectric potential characterizations indicate that the infrared-light-responsive carriers driver significantly promotes the photogenerated charge separation, accelerates carrier migration, and prolongs carrier lifetime. The photocatalytic hydrogen evolution efficiency is remarkably improved more than five times with the highest average apparent quantum yield of 16.9%. It may open up new horizons to photocatalytic technology for the more efficient use of infrared light.

11.
Nano Lett ; 17(6): 3803-3808, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28540718

RESUMO

Element doping has been extensively attempted to develop visible-light-driven photocatalysts, which introduces impurity levels and enhances light absorption. However, the dopants can also become recombination centers for photogenerated electrons and holes. To address the recombination challenge, we report a gradient phosphorus-doped CdS (CdS-P) homojunction nanostructure, creating an oriented built-in electric-field for efficient extraction of carriers from inside to surface of the photocatalyst. The apparent quantum efficiency (AQY) based on the cocatalyst-free photocatalyst is up to 8.2% at 420 nm while the H2 evolution rate boosts to 194.3 µmol·h-1·mg-1, which is 58.3 times higher than that of pristine CdS. This concept of oriented built-in electric field introduced by surface gradient diffusion doping should provide a new approach to design other types of semiconductor photocatalysts for efficient solar-to-chemical conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA