Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 107(9): 2652-2665, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35666146

RESUMO

CONTEXT: Prolactin is a multifaceted hormone known to regulate lactation. In women with gestational diabetes mellitus (GDM) history, intensive lactation has been associated with lower relative risk of future type 2 diabetes (T2D). However, the role of prolactin in T2D development and maternal metabolism in women with a recent GDM pregnancy has not been ascertained. OBJECTIVE: We examined the relationships among prolactin, future T2D risk, and key clinical and metabolic parameters. METHODS: We utilized a prospective GDM research cohort (the SWIFT study) and followed T2D onset by performing 2-hour 75-g research oral glucose tolerance test (OGTT) at study baseline (6-9 weeks postpartum) and again annually for 2 years, and also by retrieving clinical diagnoses of T2D from 2 years through 10 years of follow up from electronic medical records. Targeted metabolomics and lipidomics were applied on fasting plasma samples collected at study baseline from 2-hour 75-g research OGTTs in a nested case-control study (100 future incident T2D cases vs 100 no T2D controls). RESULTS: Decreasing prolactin quartiles were associated with increased future T2D risk (adjusted odds ratio 2.48; 95% CI, 0.81-7.58; P = 0.05). In women who maintained normoglycemia during the 10-year follow-up period, higher prolactin at baseline was associated with higher insulin sensitivity (P = 0.038) and HDL-cholesterol (P = 0.01), but lower BMI (P = 0.001) and leptin (P = 0.002). Remarkably, among women who developed future T2D, prolactin was not correlated with a favorable metabolic status (all P > 0.05). Metabolomics and lipidomics showed that lower circulating prolactin strongly correlated with a T2D-high risk lipid profile, with elevated circulating neutral lipids and lower concentrations of specific phospholipids/sphingolipids. CONCLUSION: In women with recent GDM pregnancy, low circulating prolactin is associated with specific clinical and metabolic parameters and lipid metabolites linked to a high risk of developing T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Glicemia/metabolismo , Estudos de Casos e Controles , HDL-Colesterol , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Gravidez , Prolactina , Estudos Prospectivos , Fatores de Risco
2.
Front Endocrinol (Lausanne) ; 13: 852149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600586

RESUMO

Objective: Pregnancy is a dynamic state involving multiple metabolic adaptions in various tissues including the endocrine pancreas. However, a detailed characterization of the maternal islet metabolome in relation to islet function and the ambient circulating metabolome during pregnancy has not been established. Methods: A timed-pregnancy mouse model was studied, and age-matched non-pregnant mice were used as controls. Targeted metabolomics was applied to fasting plasma and purified islets during each trimester of pregnancy. Glucose homeostasis and islet function was assessed. Bioinformatic analyses were performed to reveal the metabolic adaptive changes in plasma and islets, and to identify key metabolic pathways associated with pregnancy. Results: Fasting glucose and insulin were found to be significantly lower in pregnant mice compared to non-pregnant controls, throughout the gestational period. Additionally, pregnant mice had superior glucose excursions and greater insulin response to an oral glucose tolerance test. Interestingly, both alpha and beta cell proliferation were significantly enhanced in early to mid-pregnancy, leading to significantly increased islet size seen in mid to late gestation. When comparing the plasma metabolome of pregnant and non-pregnant mice, phospholipid and fatty acid metabolism pathways were found to be upregulated throughout pregnancy, whereas amino acid metabolism initially decreased in early through mid pregnancy, but then increased in late pregnancy. Conversely, in islets, amino acid metabolism was consistently enriched throughout pregnancy, with glycerophospholid and fatty acid metabolism was only upregulated in late pregnancy. Specific amino acids (glutamate, valine) and lipids (acyl-alkyl-PC, diacyl-PC, and sphingomyelin) were found to be significantly differentially expressed in islets of the pregnant mice compared to controls, which was possibly linked to enhanced insulin secretion and islet proliferation. Conclusion: Beta cell proliferation and function are elevated during pregnancy, and this is coupled to the enrichment of islet metabolites and metabolic pathways primarily associated with amino acid and glycerophospholipid metabolism. This study provides insight into metabolic adaptive changes in glucose homeostasis and islet function seen during pregnancy, which will provide a molecular rationale to further explore the regulation of maternal metabolism to avoid the onset of pregnancy disorders, including gestational diabetes.


Assuntos
Glucose , Insulina , Aminoácidos , Animais , Ácidos Graxos , Feminino , Homeostase , Humanos , Metabolômica , Camundongos , Gravidez
3.
BMC Med ; 19(1): 241, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34620173

RESUMO

BACKGROUND: Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of developing type 2 diabetes (T2D). It is estimated that 20-50% of women with GDM history will progress to T2D within 10 years after delivery. Intensive lactation could be negatively associated with this risk, but the mechanisms behind a protective effect remain unknown. METHODS: In this study, we utilized a prospective GDM cohort of 1010 women without T2D at 6-9 weeks postpartum (study baseline) and tested for T2D onset up to 8 years post-baseline (n=980). Targeted metabolic profiling was performed on fasting plasma samples collected at both baseline and follow-up (1-2 years post-baseline) during research exams in a subset of 350 women (216 intensive breastfeeding, IBF vs. 134 intensive formula feeding or mixed feeding, IFF/Mixed). The relationship between lactation intensity and circulating metabolites at both baseline and follow-up were evaluated to discover underlying metabolic responses of lactation and to explore the link between these metabolites and T2D risk. RESULTS: We observed that lactation intensity was strongly associated with decreased glycerolipids (TAGs/DAGs) and increased phospholipids/sphingolipids at baseline. This lipid profile suggested decreased lipogenesis caused by a shift away from the glycerolipid metabolism pathway towards the phospholipid/sphingolipid metabolism pathway as a component of the mechanism underlying the benefits of lactation. Longitudinal analysis demonstrated that this favorable lipid profile was transient and diminished at 1-2 years postpartum, coinciding with the cessation of lactation. Importantly, when stratifying these 350 women by future T2D status during the follow-up (171 future T2D vs. 179 no T2D), we discovered that lactation induced robust lipid changes only in women who did not develop incident T2D. Subsequently, we identified a cluster of metabolites that strongly associated with future T2D risk from which we developed a predictive metabolic signature with a discriminating power (AUC) of 0.78, superior to common clinical variables (i.e., fasting glucose, AUC 0.56 or 2-h glucose, AUC 0.62). CONCLUSIONS: In this study, we show that intensive lactation significantly alters the circulating lipid profile at early postpartum and that women who do not respond metabolically to lactation are more likely to develop T2D. We also discovered a 10-analyte metabolic signature capable of predicting future onset of T2D in IBF women. Our findings provide novel insight into how lactation affects maternal metabolism and its link to future diabetes onset. TRIAL REGISTRATION: ClinicalTrials.gov NCT01967030 .


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Glicemia , Aleitamento Materno , Diabetes Gestacional/epidemiologia , Feminino , Humanos , Lactação , Lipídeos , Período Pós-Parto , Gravidez , Estudos Prospectivos
4.
iScience ; 24(8): 102909, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34458694

RESUMO

Omega-3 fatty acid prescription drugs, Vascepa (≥96% eicosapentaenoic acid [EPA] ethyl ester) and Lovaza (46.5% EPA and 37.5% docosahexaenoic acid ethyl ester) are known therapeutic regimens to treat hypertriglyceridemia. However, their impact on glucose homeostasis, progression to type 2 diabetes, and pancreatic beta cell function are not well understood. In the present study, mice were treated with Vascepa or Lovaza for one week prior to six weeks of high-fat diet feeding. Vascepa but not Lovaza led to reduced insulin resistance, reduced fasting insulin and glucose, and improved glucose intolerance. Vascepa improved beta cell function, reduced liver triglycerides with enhanced expression of hepatic fatty acid oxidation genes, and altered microbiota composition. Vascepa has protective effects on diet-induced insulin resistance and glucose intolerance in mice.

5.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34027899

RESUMO

GWAS have shown that the common R325W variant of SLC30A8 (ZnT8) increases the risk of type 2 diabetes (T2D). However, ZnT8 haploinsufficiency is protective against T2D in humans, counterintuitive to earlier work in humans and mouse models. Therefore, whether decreasing ZnT8 activity is beneficial or detrimental to ß cell function, especially under conditions of metabolic stress, remains unknown. In order to examine whether the existence of human islet amyloid polypeptide (hIAPP), a coresident of the insulin granule, affects the role of ZnT8 in regulating ß cell function, hIAPP-expressing transgenics were generated with reduced ZnT8 (ZnT8B+/- hIAPP) or null ZnT8 (ZnT8B-/- hIAPP) expression specifically in ß cells. We showed that ZnT8B-/- hIAPP mice on a high-fat diet had intensified amyloid deposition and further impaired glucose tolerance and insulin secretion compared with control, ZnT8B-/-, and hIAPP mice. This can in part be attributed to impaired glucose sensing and islet cell synchronicity. Importantly, ZnT8B+/- hIAPP mice were also glucose intolerant and had reduced insulin secretion and increased amyloid aggregation compared with controls. These data suggest that loss of or reduced ZnT8 activity in ß cells heightened the toxicity induced by hIAPP, leading to impaired ß cell function and glucose homeostasis associated with metabolic stress.


Assuntos
Amiloidose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Transportador 8 de Zinco , Animais , Modelos Animais de Doenças , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Masculino , Camundongos , Camundongos Transgênicos , Transportador 8 de Zinco/genética , Transportador 8 de Zinco/metabolismo
6.
Elife ; 92020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32748787

RESUMO

Approximately, 35% of women with Gestational Diabetes (GDM) progress to Type 2 Diabetes (T2D) within 10 years. However, links between GDM and T2D are not well understood. We used a well-characterised GDM prospective cohort of 1035 women following up to 8 years postpartum. Lipidomics profiling covering >1000 lipids was performed on fasting plasma samples from participants 6-9 week postpartum (171 incident T2D vs. 179 controls). We discovered 311 lipids positively and 70 lipids negatively associated with T2D risk. The upregulation of glycerolipid metabolism involving triacylglycerol and diacylglycerol biosynthesis suggested activated lipid storage before diabetes onset. In contrast, decreased sphingomyelines, hexosylceramide and lactosylceramide indicated impaired sphingolipid metabolism. Additionally, a lipid signature was identified to effectively predict future diabetes risk. These findings demonstrate an underlying dyslipidemia during the early postpartum in those GDM women who progress to T2D and suggest endogenous lipogenesis may be a driving force for future diabetes onset.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Gestacional , Dislipidemias/complicações , Lipídeos/sangue , Adulto , Estudos de Coortes , Feminino , Seguimentos , Humanos , Lipogênese , Redes e Vias Metabólicas , Período Pós-Parto/sangue , Valor Preditivo dos Testes , Gravidez , Estudos Prospectivos , Fatores de Risco
7.
Diabetes Obes Metab ; 22(11): 2021-2031, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32558194

RESUMO

AIM: To examine the mechanism of action of γ-aminobutyric acid (GABA) on ß-cell proliferation and investigate if co-treatment with Ly49, a novel GABA type A receptor positive allosteric modulator (GABAA -R PAM), amplifies this effect. METHODS: Human or mouse islets were co-treated for 4-5 days with GABA and selected receptor or cell signalling pathway modulators. Immunofluorescence was used to determine protein co-localization, cell number or proliferation, and islet size. Osmotic minipumps were surgically implanted in mice to assess Ly49 effects on pancreatic ß-cells. RESULTS: Amplification of GABAA -R signalling enhanced GABA-stimulated ß-cell proliferation in cultured mouse islets. Co-treatment of GABA with an inhibitor specific for PI3K, mTORC1/2, or p70S6K, abolished GABA-stimulated ß-cell proliferation in mouse and human islets. Nuclear p-AktSer473 and p-p70S6KThr421/Ser424 expression in pancreatic ß-cells was increased in GABA-treated mice compared with vehicle-treated mice, an effect augmented with GABA and Ly49 co-treatment. Mice co-treated with GABA and Ly49 exhibited enhanced ß-cell area and proliferation compared with GABA-treated mice. Furthermore, S961 injection (an insulin receptor antagonist) resulted in enhanced plasma insulin in GABA and Ly49 co-treated mice compared with GABA-treated mice. Importantly, GABA co-treated with Ly49 increased ß-cell proliferation in human islets providing a potential application for human subjects. CONCLUSIONS: We show that GABA stimulates ß-cell proliferation via the PI3K/mTORC1/p70S6K pathway in both mouse and human islets. Furthermore, we show that Ly49 enhances the ß-cell regenerative effects of GABA, showing potential in the intervention of diabetes.


Assuntos
Receptores de GABA , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Proliferação de Células , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Ácido gama-Aminobutírico
8.
PLoS Med ; 17(5): e1003112, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433647

RESUMO

BACKGROUND: Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of developing type 2 diabetes (T2D) during midlife and an elevated risk of developing hypertension and cardiovascular disease. Glucose tolerance reclassification after delivery is recommended, but fewer than 40% of women with GDM are tested. Thus, improved risk stratification methods are needed, as is a deeper understanding of the pathology underlying the transition from GDM to T2D. We hypothesize that metabolites during the early postpartum period accurately distinguish risk of progression from GDM to T2D and that metabolite changes signify underlying pathophysiology for future disease development. METHODS AND FINDINGS: The study utilized fasting plasma samples collected from a well-characterized prospective research study of 1,035 women diagnosed with GDM. The cohort included racially/ethnically diverse pregnant women (aged 20-45 years-33% primiparous, 37% biparous, 30% multiparous) who delivered at Kaiser Permanente Northern California hospitals from 2008 to 2011. Participants attended in-person research visits including 2-hour 75-g oral glucose tolerance tests (OGTTs) at study baseline (6-9 weeks postpartum) and annually thereafter for 2 years, and we retrieved diabetes diagnoses from electronic medical records for 8 years. In a nested case-control study design, we collected fasting plasma samples among women without diabetes at baseline (n = 1,010) to measure metabolites among those who later progressed to incident T2D or did not develop T2D (non-T2D). We studied 173 incident T2D cases and 485 controls (pair-matched on BMI, age, and race/ethnicity) to discover metabolites associated with new onset of T2D. Up to 2 years post-baseline, we analyzed samples from 98 T2D cases with 239 controls to reveal T2D-associated metabolic changes. The longitudinal analysis tracked metabolic changes within individuals from baseline to 2 years of follow-up as the trajectory of T2D progression. By building prediction models, we discovered a distinct metabolic signature in the early postpartum period that predicted future T2D with a median discriminating power area under the receiver operating characteristic curve of 0.883 (95% CI 0.820-0.945, p < 0.001). At baseline, the most striking finding was an overall increase in amino acids (AAs) as well as diacyl-glycerophospholipids and a decrease in sphingolipids and acyl-alkyl-glycerophospholipids among women with incident T2D. Pathway analysis revealed up-regulated AA metabolism, arginine/proline metabolism, and branched-chain AA (BCAA) metabolism at baseline. At follow-up after the onset of T2D, up-regulation of AAs and down-regulation of sphingolipids and acyl-alkyl-glycerophospholipids were sustained or strengthened. Notably, longitudinal analyses revealed only 10 metabolites associated with progression to T2D, implicating AA and phospholipid metabolism. A study limitation is that all of the analyses were performed with the same cohort. It would be ideal to validate our findings in an independent longitudinal cohort of women with GDM who had glucose tolerance tested during the early postpartum period. CONCLUSIONS: In this study, we discovered a metabolic signature predicting the transition from GDM to T2D in the early postpartum period that was superior to clinical parameters (fasting plasma glucose, 2-hour plasma glucose). The findings suggest that metabolic dysregulation, particularly AA dysmetabolism, is present years prior to diabetes onset, and is revealed during the early postpartum period, preceding progression to T2D, among women with GDM. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01967030.


Assuntos
Aminoácidos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Metabolismo dos Lipídeos , Adulto , Progressão da Doença , Feminino , Humanos , Pessoa de Meia-Idade , Período Pós-Parto/metabolismo , Gravidez , Fatores de Risco , Adulto Jovem
9.
FASEB J ; 33(3): 3968-3984, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509117

RESUMO

γ-Aminobutyric acid (GABA) administration has been shown to increase ß-cell mass, leading to a reversal of type 1 diabetes in mice. Whether GABA has any effect on ß cells of healthy and prediabetic/glucose-intolerant obese mice remains unknown. In the present study, we show that oral GABA administration ( ad libitum) to mice indeed increased pancreatic ß-cell mass, which led to a modest enhancement in insulin secretion and glucose tolerance. However, GABA treatment did not further increase insulin-positive islet area in high fat diet-fed mice and was unable to prevent or reverse glucose intolerance and insulin resistance. Mechanistically, whether in vivo or in vitro, GABA treatment increased ß-cell proliferation. In vitro, the effect was shown to be mediated via the GABAA receptor. Single-cell RNA sequencing analysis revealed that GABA preferentially up-regulated pathways linked to ß-cell proliferation and simultaneously down-regulated those networks required for other processes, including insulin biosynthesis and metabolism. Interestingly, single-cell differential expression analysis revealed GABA treatment gave rise to a distinct subpopulation of ß cells with a unique transcriptional signature, including urocortin 3 ( ucn3), wnt4, and hepacam2. Taken together, this study provides new mechanistic insight into the proliferative nature of GABA but suggests that ß-cell compensation associated with prediabetes overlaps with, and negates, its proliferative effects.-Untereiner, A., Abdo, S., Bhattacharjee, A., Gohil, H., Pourasgari, F., Ibeh, N., Lai, M., Batchuluun, B., Wong, A., Khuu, N., Liu, Y., Al Rijjal, D., Winegarden, N., Virtanen, C., Orser, B. A., Cabrera, O., Varga, G., Rocheleau, J., Dai, F. F., Wheeler, M. B. GABA promotes ß-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity.


Assuntos
Proliferação de Células , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidade/metabolismo , Transcriptoma , Ácido gama-Aminobutírico/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Homeostase , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Receptores de GABA-A/metabolismo , Urocortinas/metabolismo
10.
Diabetes ; 65(9): 2529-39, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338739

RESUMO

Gestational diabetes mellitus (GDM) affects 3-14% of pregnancies, with 20-50% of these women progressing to type 2 diabetes (T2D) within 5 years. This study sought to develop a metabolomics signature to predict the transition from GDM to T2D. A prospective cohort of 1,035 women with GDM pregnancy were enrolled at 6-9 weeks postpartum (baseline) and were screened for T2D annually for 2 years. Of 1,010 women without T2D at baseline, 113 progressed to T2D within 2 years. T2D developed in another 17 women between 2 and 4 years. A nested case-control design used 122 incident case patients matched to non-case patients by age, prepregnancy BMI, and race/ethnicity. We conducted metabolomics with baseline fasting plasma and identified 21 metabolites that significantly differed by incident T2D status. Machine learning optimization resulted in a decision tree modeling that predicted T2D incidence with a discriminative power of 83.0% in the training set and 76.9% in an independent testing set, which is far superior to measuring fasting plasma glucose levels alone. The American Diabetes Association recommends T2D screening in the early postpartum period via oral glucose tolerance testing after GDM, which is a time-consuming and inconvenient procedure. Our metabolomics signature predicted T2D incidence from a single fasting blood sample. This study represents the first metabolomics study of the transition from GDM to T2D validated in an independent testing set, facilitating early interventions.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Gestacional/epidemiologia , Adulto , Glicemia/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Diabetes Gestacional/sangue , Feminino , Teste de Tolerância a Glucose , Humanos , Incidência , Pessoa de Meia-Idade , Período Pós-Parto/sangue , Gravidez , Estudos Prospectivos , Adulto Jovem
11.
Cell Rep ; 14(12): 2889-900, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26997281

RESUMO

Prediabetes, a state of mild glucose intolerance, can persist for years before a sudden decline in beta cell function and rapid deterioration to overt diabetes. The mechanism underlying this tipping point of beta cell dysfunction remains unknown. Here, the furan fatty acid metabolite CMPF was evaluated in a prospective cohort. Those who developed overt diabetes had a significant increase in CMPF over time, whereas prediabetics maintained chronically elevated levels, even up to 5 years before diagnosis. To evaluate the effect of increasing CMPF on diabetes progression, we used obese, insulin-resistant models of prediabetes. CMPF accelerated diabetes development by inducing metabolic remodeling, resulting in preferential utilization of fatty acids over glucose. This was associated with diminished glucose-stimulated insulin secretion, increased ROS formation, and accumulation of proinsulin, all characteristics of human diabetes. Thus, an increase in CMPF may represent the tipping point in diabetes development by accelerating beta cell dysfunction.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Furanos/sangue , Furanos/metabolismo , Estado Pré-Diabético/patologia , Propionatos/sangue , Propionatos/metabolismo , Adulto , Idoso , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Produtos Finais de Glicação Avançada/análise , Glicólise/efeitos dos fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Modelos Logísticos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pâncreas/metabolismo , Pâncreas/patologia , Estado Pré-Diabético/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
J Biol Chem ; 290(41): 25045-61, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26272612

RESUMO

GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Ligação Proteica , ATPases Translocadoras de Prótons/deficiência , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , ATPases Vacuolares Próton-Translocadoras/deficiência , ATPases Vacuolares Próton-Translocadoras/genética
13.
PLoS One ; 10(6): e0129226, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075596

RESUMO

Glucagon regulates glucose homeostasis by controlling glycogenolysis and gluconeogenesis in the liver. Exaggerated and dysregulated glucagon secretion can exacerbate hyperglycemia contributing to type 2 diabetes (T2D). Thus, it is important to understand how glucagon receptor (GCGR) activity and signaling is controlled in hepatocytes. To better understand this, we sought to identify proteins that interact with the GCGR to affect ligand-dependent receptor activation. A Flag-tagged human GCGR was recombinantly expressed in Chinese hamster ovary (CHO) cells, and GCGR complexes were isolated by affinity purification (AP). Complexes were then analyzed by mass spectrometry (MS), and protein-GCGR interactions were validated by co-immunoprecipitation (Co-IP) and Western blot. This was followed by studies in primary hepatocytes to assess the effects of each interactor on glucagon-dependent glucose production and intracellular cAMP accumulation, and then in immortalized CHO and liver cell lines to further examine cell signaling. Thirty-three unique interactors were identified from the AP-MS screening of GCGR expressing CHO cells in both glucagon liganded and unliganded states. These studies revealed a particularly robust interaction between GCGR and 5 proteins, further validated by Co-IP, Western blot and qPCR. Overexpression of selected interactors in mouse hepatocytes indicated that two interactors, LDLR and TMED2, significantly enhanced glucagon-stimulated glucose production, while YWHAB inhibited glucose production. This was mirrored with glucagon-stimulated cAMP production, with LDLR and TMED2 enhancing and YWHAB inhibiting cAMP accumulation. To further link these interactors to glucose production, key gluconeogenic genes were assessed. Both LDLR and TMED2 stimulated while YWHAB inhibited PEPCK and G6Pase gene expression. In the present study, we have probed the GCGR interactome and found three novel GCGR interactors that control glucagon-stimulated glucose production by modulating cAMP accumulation and genes that control gluconeogenesis. These interactors may be useful targets to control glucose homeostasis in T2D.


Assuntos
Fígado/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Animais , Células CHO , Proteínas de Transporte , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Gluconeogênese/genética , Glucose/metabolismo , Hepatócitos/metabolismo , Camundongos , Ligação Proteica , Proteômica/métodos , Receptores Acoplados a Proteínas G , Reprodutibilidade dos Testes
14.
J Biol Chem ; 290(30): 18757-69, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25969539

RESUMO

Zinc plays an essential role in the regulation of pancreatic ß cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the ß cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 ß cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic ß cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 ß cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in ß cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on ß cell survival.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Diabetes Mellitus/genética , Células Secretoras de Insulina/patologia , Proteínas de Neoplasias/metabolismo , Zinco/metabolismo , Animais , Apoptose , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Citosol/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Homeostase , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo
15.
Mol Cell Proteomics ; 13(11): 3049-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25044020

RESUMO

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic ß cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 ß cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in ß cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor-PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of ß cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Glucagon/metabolismo , Receptores de Progesterona/metabolismo , Inibidores de Adenilil Ciclases , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , AMP Cíclico/biossíntese , AMP Cíclico/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Secreção de Insulina , Espectrometria de Massas , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
16.
Cell Metab ; 19(4): 653-66, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24703697

RESUMO

Gestational diabetes (GDM) results from failure of the ß cells to adapt to increased metabolic demands; however, the cause of GDM and the extremely high rate of progression to type 2 diabetes (T2D) remains unknown. Using metabolomics, we show that the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) is elevated in the plasma of humans with GDM, as well as impaired glucose-tolerant and T2D patients. In mice, diabetic levels of plasma CMPF induced glucose intolerance, impaired glucose-stimulated insulin secretion, and decreased glucose utilization. Mechanistically, we show that CMPF acts directly on the ß cell, causing impaired mitochondrial function, decreasing glucose-induced ATP accumulation, and inducing oxidative stress, resulting in dysregulation of key transcription factors and ultimately reduced insulin biosynthesis. Importantly, specifically blocking its transport through OAT3 or antioxidant treatment could prevent CMPF-induced ß cell dysfunction. Thus, CMPF provides a link between ß cell dysfunction and GDM/T2D that could be targeted therapeutically.


Assuntos
Furanos/sangue , Células Secretoras de Insulina/patologia , Mitocôndrias/patologia , Modelos Biológicos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Propionatos/sangue , Trifosfato de Adenosina/metabolismo , Animais , Furanos/efeitos adversos , Humanos , Insulina/biossíntese , Células Secretoras de Insulina/efeitos dos fármacos , Metabolômica , Camundongos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Propionatos/efeitos adversos , Fatores de Transcrição/metabolismo
17.
J Biol Chem ; 283(15): 10184-97, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18250168

RESUMO

During insulin secretion, pancreatic alpha-cells are exposed to Zn(2+) released from insulin-containing secretory granules. Although maintenance of Zn(2+) homeostasis is critical for cell survival and glucagon secretion, very little is known about Zn(2+)-transporting pathways and the regulation of Zn(2+) in alpha-cells. To examine the effect of Zn(2+) on glucagon secretion and possible mechanisms controlling the intracellular Zn(2+) level ([Zn(2+)](i)), we employed a glucagon-producing cell line (alpha-TC6) and mouse islets where non-beta-cells were identified using islets expressing green fluorescent protein exclusively in beta-cells. In this study, we first confirmed that Zn(2+) treatment resulted in the inhibition of glucagon secretion in alpha-TC6 cells and mouse islets in vitro. The inhibition of secretion was not likely via activation of K(ATP) channels by Zn(2+). We then determined that Zn(2+) was transported into alpha-cells and was able to accumulate under both low and high glucose conditions, as well as upon depolarization of cells with KCl. The nonselective Ca(2+) channel blocker Gd(3+) partially inhibited Zn(2+) influx in alpha-TC cells, whereas the L-type voltage-gated Ca(2+) channel inhibitor nitrendipine failed to block Zn(2+) accumulation. To investigate Zn(2+) transport further, we profiled alpha-cells for Zn(2+) transporter transcripts from the two families that work in opposite directions, SLC39 (ZIP, Zrt/Irt-like protein) and SLC30 (ZnT, Zn(2+) transporter). We observed that Zip1, Zip10, and Zip14 were the most abundantly expressed Zips and ZnT4, ZnT5, and ZnT8 the dominant ZnTs. Because the redox state of cells is also a major regulator of [Zn(2+)](i), we examined the effects of oxidizing agents on Zn(2+) mobilization within alpha-cells. 2,2'-Dithiodipyridine (-SH group oxidant), menadione (superoxide generator), and SIN-1 (3-morpholinosydnonimine) (peroxynitrite generator) all increased [Zn(2+)](i) in alpha-cells. Together these results demonstrate that Zn(2+) inhibits glucagon secretion, and it is transported into alpha-cells in part through Ca(2+) channels. Zn(2+) transporters and the redox state also modulate [Zn(2+)](i).


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Células Secretoras de Glucagon/metabolismo , Zinco/metabolismo , Animais , Proteínas de Transporte de Cátions/antagonistas & inibidores , Linhagem Celular , Gadolínio/farmacologia , Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Insulina/metabolismo , Secreção de Insulina , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Camundongos , Camundongos Transgênicos , Oxidantes/farmacologia , Vesículas Secretórias/metabolismo
18.
J Biol Chem ; 283(12): 7936-48, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18162472

RESUMO

Involvement of the mitochondrial permeability transition (MPT) pore in early stages of lipotoxic stress in the pancreatic beta-cell lines MIN6 and INS-1 was the focus of this study. Both long term (indirect) and acute (direct) effects of fatty acid (FA) application on beta-cell susceptibility to Ca(2+)-induced MPT induction were examined using both permeabilized and intact beta-cells. Long term exposure to moderate (i.e. below cytotoxic) levels of the saturated FA palmitate sensitized beta-cell mitochondria to MPT induced by Ca(2+). Long term exposure to palmitate was significantly a more efficient inducer of MPT than the unsaturated FA oleate, although upon acute application both caused similar MPT activation. Application of antioxidants, inhibitors of the ceramide pathway, or modifiers of membrane fluidity did not protect beta-cell mitochondria from FA exposure. However, significant protection was provided by co-application of the unsaturated FA oleate in a phosphatidylinositol 3-kinase-dependent manner. Characterization of MPT pore opening in response to moderate palmitate treatment revealed the opening of a unique form of MPT in beta-cells as it encompassed features of both low and high conductance MPT states. Specifically, this MPT showed solute selectivity, characteristic of a low conductance MPT; however, it affected mitochondrial respiration and membrane potential in a way typical of a high conductance MPT. Activation of the full-size/high conductance form of MPT required application of high levels of FA that reduced growth and initiated apoptosis. These findings suggest that in the beta-cell, MPTs can act as both initiators of cell death and as versatile modulators of cell metabolism, depending on the mode of the MPT pore induced.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Ácido Palmítico/toxicidade , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Células Secretoras de Insulina/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/patologia , Ácido Oleico/metabolismo , Ácido Oleico/toxicidade , Consumo de Oxigênio/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo
19.
J Biol Chem ; 281(31): 21942-21953, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16731532

RESUMO

Visinin-like protein-1 (VILIP-1) is a member of the neuronal Ca2+ sensor protein family that modulates Ca2+-dependent cell signaling events. VILIP-1, which is expressed primarily in the brain, increases cAMP formation in neural cells by modulating adenylyl cyclase, but its functional role in other tissues remains largely unknown. In this study, we demonstrate that VILIP-1 is expressed in murine pancreatic islets and beta-cells. To gain insight into the functions of VILIP-1 in beta-cells, we used both overexpression and small interfering RNA knockdown strategies. Overexpression of VILIP-1 in the MIN6 beta-cell line or isolated mouse islets had no effect on basal insulin secretion but significantly increased glucose-stimulated insulin secretion. cAMP accumulation was elevated in VILIP-1-overexpressing cells, and the protein kinase A inhibitor H-89 attenuated increased glucose-stimulated insulin secretion. Overexpression of VILIP-1 in isolated mouse beta-cells increased cAMP content accompanied by increased cAMP-responsive element-binding protein gene expression and enhanced exocytosis as detected by cell capacitance measurements. Conversely, VILIP-1 knockdown by small interfering RNA caused a reduction in cAMP accumulation and produced a dramatic increase in preproinsulin mRNA, basal insulin secretion, and total cellular insulin content. The increase in preproinsulin mRNA in these cells was attributed to enhanced insulin gene transcription. Taken together, we have shown that VILIP-1 is expressed in pancreatic beta-cells and modulates insulin secretion. Increased VILIP-1 enhanced insulin secretion in a cAMP-associated manner. Down-regulation of VILIP-1 was accompanied by decreased cAMP accumulation but increased insulin gene transcription.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Neurocalcina/fisiologia , Animais , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Exocitose , Regulação da Expressão Gênica , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Neurocalcina/biossíntese , Neurocalcina/genética , RNA Interferente Pequeno/farmacologia , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...