Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 407, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987801

RESUMO

Segmental bone defects, arising from factors such as trauma, tumor resection, and congenital malformations, present significant clinical challenges that often necessitate complex reconstruction strategies. Hydrogels loaded with multiple osteogenesis-promoting components have emerged as promising tools for bone defect repair. While the osteogenic potential of the Piezo1 agonist Yoda1 has been demonstrated previously, its hydrophobic nature poses challenges for effective loading onto hydrogel matrices.In this study, we address this challenge by employing Yoda1-pretreated bone marrow-derived mesenchymal stem cell (BMSCs) exosomes (Exo-Yoda1) alongside exosomes derived from BMSCs (Exo-MSC). Comparatively, Exo-Yoda1-treated BMSCs exhibited enhanced osteogenic capabilities compared to both control groups and Exo-MSC-treated counterparts. Notably, Exo-Yoda1-treated cells demonstrated similar functionality to Yoda1 itself. Transcriptome analysis revealed activation of osteogenesis-associated signaling pathways, indicating the potential transduction of Yoda1-mediated signals such as ErK, a finding validated in this study. Furthermore, we successfully integrated Exo-Yoda1 into gelatin methacryloyl (GelMA)/methacrylated sodium alginate (SAMA)/ß-tricalcium phosphate (ß-TCP) hydrogels. These Exo-Yoda1-loaded hydrogels demonstrated augmented osteogenesis in subcutaneous ectopic osteogenesis nude mice models and in rat skull bone defect model. In conclusion, our study introduces Exo-Yoda1-loaded GELMA/SAMA/ß-TCP hydrogels as a promising approach to promoting osteogenesis. This innovative strategy holds significant promise for future widespread clinical applications in the realm of bone defect reconstruction.


Assuntos
Exossomos , Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Osteogênese/efeitos dos fármacos , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Ratos , Masculino , Alginatos/química , Gelatina/química , Diferenciação Celular/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Células Cultivadas
2.
Carbohydr Polym ; 340: 122215, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857996

RESUMO

The healing of diabetic wounds is significantly impeded due to severe oxidative stress and hindered angiogenesis, presenting a major challenge to clinical treatment. In this context, we introduces a novel hydrogel dressing strategy that uniquely combines α-lipoic acid-modified chitosan (LAMC) and melanin nanoparticles (MNPs). This innovative hydrogel, LAMC@MNPs, is formulated to gel under ultraviolet (UV) light without the need for a photoinitiator, simplifying the preparation process and potentially enhancing safety. Our experimental results demonstrate that the LAMC@MNPs hydrogel not only exhibits superior skin adhesion, with an average strength of 56.59 ± 3.16 KPa, but also effectively alleviates oxidative stress and accelerates vascular regeneration and wound healing. This is achieved by promoting cell migration and scavenging free radicals, addressing the critical barriers in diabetic wound care. The combination of these materials and their functional benefits presents a promising new approach to diabetic wound treatment.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Hidrogéis , Melaninas , Ácido Tióctico , Cicatrização , Cicatrização/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Animais , Melaninas/química , Hidrogéis/química , Hidrogéis/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas/química , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Humanos , Movimento Celular/efeitos dos fármacos , Pele/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Mater Horiz ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916578

RESUMO

Predicting protein binding with the material surface still remains a challenge. Here, a novel approach, platypus dual perception neural network (Platyper), was developed to describe the interactions in protein-surface systems involving bioceramics with BMPs. The resulting model integrates a graph convolutional neural network (GCN) based on interatomic potentials with a convolutional neural network (CNN) model based on images of molecular structures. This dual-vision approach, inspired by the platypus's adaptive sensory system, addresses the challenge of accurately predicting the complex binding and unbinding dynamics in steered molecular dynamics (SMD) simulations. The model's effectiveness is demonstrated through its application in predicting surface interactions in protein-ligand systems. Notably, Platyper improves computational efficiency compared to classical SMD-based methods and overcomes the limitations of GNN-based methods for large-scale atomic simulations. The incorporation of heat maps enhances model's interpretability, providing valuable insights into its predictive capabilities. Overall, Platyper represents a promising advancement in the accurate and efficient prediction of protein-surface interactions in the context of bioceramics and growth factors.

5.
Bioact Mater ; 38: 181-194, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38711758

RESUMO

Chronic diabetic wounds are the most common complication for diabetic patients. Due to high oxidative stress levels affecting the entire healing process, treating diabetic wounds remains a challenge. Here, we present a strategy for continuously regulating oxidative stress microenvironment by the catalyst-like magnesium-gallate metal-organic framework (Mg-GA MOF) and developing sprayable hydrogel dressing with sodium alginate/chitosan quaternary ammonium salts to treat diabetic wounds. Chitosan quaternary ammonium salts with antibacterial properties can prevent bacterial infection. The continuous release of gallic acid (GA) effectively eliminates reactive oxygen species (ROS), reduces oxidative stress, and accelerates the polarization of M1-type macrophages to M2-type, shortening the transition between inflammation and proliferative phase and maintaining redox balance. Besides, magnesium ions adjuvant therapy promotes vascular regeneration and neuronal formation by activating the expression of vascular-associated genes. Sprayable hydrogel dressings with antibacterial, antioxidant, and inflammatory regulation rapidly repair diabetic wounds by promoting neurovascular network reconstruction and accelerating re-epithelialization and collagen deposition. This study confirms the feasibility of catalyst-like MOF-contained sprayable hydrogel to regulate the microenvironment continuously and provides guidance for developing the next generation of non-drug diabetes dressings.

6.
Acta Biomater ; 182: 28-41, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761961

RESUMO

The regenerative microenvironment after peripheral nerve injury is imbalanced and difficult to rebalance, which is mainly affected by inflammation, oxidative stress, and inadequate blood supply. The difficulty in remodeling the nerve regeneration microenvironment is the main reason for slow nerve regeneration. Traditional drug treatments have certain limitations, such as difficulty in penetrating the blood-nerve barrier and lack of pleiotropic effects. Therefore, there is an urgent need to build multifunctional nerve grafts that can effectively regulate the regenerative microenvironment and promote nerve regeneration. Nitric oxide (NO), a highly effective gas transmitter with diatomic radicals, is an important regulator of axonal growth and migration, synaptic plasticity, proliferation of neural precursor cells, and neuronal survival. Moreover, NO provides potential anti-inflammation, anti-oxidation, and blood vessel promotion applications. However, excess NO may cause cell death and neuroinflammatory cell damage. The prerequisite for NO treatment of peripheral nerve injury is that it is gradually released over time. In this study, we constructed an injectable NO slow-release system with two main components, including macromolecular NO donor nanoparticles (mPEG-P(MSNO-EG) nanoparticles, NO-NPs) and a carrier for the nanoparticles, mPEG-PA-PP injectable temperature-sensitive hydrogel. Due to the multiple physiological regulation of NO and better physiological barrier penetration, the conduit effectively regulates the inflammatory response and oxidative stress of damaged peripheral nerves, promotes nerve vascularization, and nerve regeneration and docking, accelerating the nerve regeneration process. STATEMENT OF SIGNIFICANCE: The slow regeneration speed of peripheral nerves is mainly due to the destruction of the regeneration microenvironment. Neural conduits with drug delivery capabilities have the potential to improve the microenvironment of nerve regeneration. However, traditional drugs are hindered by the blood nerve barrier and cannot effectively target the injured area. NO, an endogenous gas signaling molecule, can freely cross the blood nerve barrier and act on target cells. However, excessive NO can lead to cell apoptosis. In this study, a NO sustained-release system was constructed to regulate the microenvironment of nerve regeneration through various pathways and promote nerve regeneration.


Assuntos
Preparações de Ação Retardada , Regeneração Nervosa , Óxido Nítrico , Animais , Óxido Nítrico/metabolismo , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Ratos Sprague-Dawley , Ratos , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Nanopartículas/química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Masculino , Hidrogéis/química , Nervo Isquiático/efeitos dos fármacos
7.
Acta Biomater ; 182: 111-125, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763407

RESUMO

Bone cement is widely used in clinical with optimistic filling and mechanical properties. However, the setting time of bone cement is difficult to accurately control, and the existing bone cements exhibit limited therapeutic functionalities. In response to these challenges, we designed and synthesized Nd-doped whitlockite (Nd-WH), endowing bone cement with photothermal-responsive and fluorescence imaging capabilities. The doping amount and photothermal properties of Nd-doped whitlockite were studied, and the composite bone cement was prepared. The results showed that the setting time of bone cement could be regulated by near infrared irradiation, and the multiple functions of promoting osteogenic differentiation, antibacterial and anti-tumor could be realized by adjusting the power and irradiation time of near infrared. By incorporating Nd-doped whitlockite and bone cement, we developed an all-in-one strategy to achieve setting time control, enhanced osteogenic ability, tumor cell clearance, bacterial clearance, and bone tissue regeneration. The optimized physical and mechanical properties of composite bone cement ensure adaptability and plasticity. In vitro and in vivo experiments validated the effectiveness of this bone cement platform for bone repair, tumor cell clearance and bacterial clearance. The universal methods to regulate the setting time and function of bone cement by photothermal effect has potential in orthopedic surgery and is expected to be a breakthrough in the field of bone defect repair. Further research and clinical validation are needed to ensure its safety, efficacy and sustainability. STATEMENT OF SIGNIFICANCE: Bone cement is a valuable clinical material. However, the setting time of bone cement is difficult to control, and the therapeutic function of existing bone cement is limited. Various studies have shown that the bone repair capacity of bone cements can be enhanced by synergistic stimulatory effects in vivo and ex vivo. Unfortunately, most of the existing photothermal conversion materials are non-degradable and poorly biocompatible. This study provides a bone-like photothermal conversion material with photothermal response and fluorescence imaging properties, and constructed a platform for integrated regulation of the setting time of bone cement and diversification of its functions. Therefore, it helps to design multi-functional bone repair materials that are more convenient and effective in clinical operation.


Assuntos
Cimentos Ósseos , Raios Infravermelhos , Compostos de Magnésio , Fosfatos , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Animais , Fosfatos/química , Fosfatos/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Regeneração Óssea/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
8.
J Mater Chem B ; 12(22): 5377-5390, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38716615

RESUMO

The healing of scalded wounds faces many challenges such as chronic inflammation, oxidative stress, wound infection, and difficulties in vascular and nerve regeneration. Treating a single problem cannot effectively coordinate the complex regenerative microenvironment of scalded wounds, limiting the healing and functional recovery of the skin. Therefore, there is a need to develop a multi-effect treatment plan that can adaptively address the issues at each stage of wound healing. In this study, we propose a scheme for on-demand release of hydrogen sulfide (H2S) based on the concentration of reactive oxygen species (ROS) in the wound microenvironment. This is achieved by encapsulating peroxythiocarbamate (PTCM) in the ROS-responsive polymer poly(ethylene glycol)-poly(L-methionine) (PMet) to form nanoparticles, which are loaded into a thermosensitive injectable hydrogel, F127-poly(L-aspartic acid-N-hydroxysuccinimide) (F127-P(Asp-NHS)), to create a scald dressing. The H2S released by the hydrogel dressing on demand regulates the wound microenvironment by alleviating infection, reducing oxidative stress, and remodeling inflammation, thereby accelerating the healing of full-thickness scalded wounds. This hydrogel dressing for the adaptive release of H2S has great potential in addressing complex scalded wounds associated with infection and chronic inflammation.


Assuntos
Hidrogéis , Sulfeto de Hidrogênio , Cicatrização , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Bandagens , Preparações de Ação Retardada/química , Espécies Reativas de Oxigênio/metabolismo , Injeções , Polietilenoglicóis/química , Tamanho da Partícula , Masculino
9.
Artigo em Inglês | MEDLINE | ID: mdl-38623938

RESUMO

The periosteum, rich in neurovascular networks, bone progenitor cells, and stem cells, is vital for bone repair. Current artificial periosteal materials face challenges in mechanical strength, bacterial infection, and promoting osteogenic differentiation and angiogenesis. To address these issues, we adjusted the electrospinning ratio of poly-ε-caprolactone and chitosan and incorporated Zn doping whitlockite with polydopamine coating into a nanofiber membrane. After a series of characterizations, optimal results were achieved with a poly-ε-caprolactone: chitosan ratio of 8:1 and 5% nanoparticle content. In vitro cell experiments and in vivo calvarial defect models, the sustained release of Mg2+ and Ca2+ promoted vascularization and new bone formation, respectively, while the release of Zn2+ was conducive to antibacterial and cooperated with Mg2+ to promote neurovascularization. Consequently, this antibacterial bionic periosteum with an angiogenesis-neurogenesis coupling effect demonstrates a promising potential for bone repair applications.

10.
Adv Healthc Mater ; : e2400770, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626942

RESUMO

Metabolites, as markers of phenotype at the molecular level, can regulate the function of DNA, RNA, and proteins through chemical modifications or interactions with large molecules. Citrate is an important metabolite that affects macrophage polarization and osteoporotic bone function. Therefore, a better understanding of the precise effect of citrate on macrophage polarization may provide an effective alternative strategy to reverse osteoporotic bone metabolism. In this study, a citrate functional scaffold to control the metabolic pathway during macrophage polarization based on the metabolic differences between pro-inflammatory and anti-inflammatory phenotypes for maintaining bone homeostasis, is fabricated. Mechanistically, only outside M1 macrophages are accumulated high concentrations of citrate, in contrast, M2 macrophages consume massive citrate. Therefore, citrate-functionalized scaffolds exert more sensitive inhibitory effects on metabolic enzyme activity during M1 macrophage polarization than M2 macrophage polarization. Citrate can block glycolysis-related enzymes by occupying the binding-site and ensure sufficient metabolic flux in the TCA cycle, so as to turn the metabolism of macrophages to oxidative phosphorylation of M2 macrophage, largely maintaining bone homeostasis. These studies indicate that exogenous citrate can realize metabolic control of macrophage polarization for maintaining bone homeostasis in osteoporosis.

11.
Regen Biomater ; 11: rbae024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628546

RESUMO

Diabetic wounds are a difficult medical challenge. Excessive secretion of matrix metalloproteinase-9 (MMP-9) in diabetic wounds further degrades the extracellular matrix and growth factors and causes severe vascular damage, which seriously hinders diabetic wound healing. To solve these issues, a double-network porous hydrogel composed of poly (methyl methacrylate-co-acrylamide) (p(MMA-co-AM)) and polyvinyl alcohol (PVA) was constructed by the high internal phase emulsion (HIPE) technique for the delivery of potassium sucrose octasulfate (PSO), a drug that can inhibit MMPs, increase angiogenesis and improve microcirculation. The hydrogel possessed a typical polyHIPE hierarchical microstructure with interconnected porous morphologies, high porosity, high specific surface area, excellent mechanical properties and suitable swelling properties. Meanwhile, the p(MMA-co-AM)/PVA@PSO hydrogel showed high drug-loading performance and effective PSO release. In addition, both in vitro and in vivo studies showed that the p(MMA-co-AM)/PVA@PSO hydrogel had good biocompatibility and significantly accelerated diabetic wound healing by inhibiting excessive MMP-9 in diabetic wounds, increasing growth factor secretion, improving vascularization, increasing collagen deposition and promoting re-epithelialization. Therefore, this study provided a reliable therapeutic strategy for diabetic wound healing, some theoretical basis and new insights for the rational design and preparation of wound hydrogel dressings with high porosity, high drug-loading performance and excellent mechanical properties.

12.
J Control Release ; 370: 210-229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648955

RESUMO

Chronic skin wounds, especially infected ones, pose a significant clinical challenge due to their increasing incidence and poor outcomes. The deteriorative microenvironment in such wounds, characterized by reduced extracellular matrix, impaired angiogenesis, insufficient neurogenesis, and persistent bacterial infection, has prompted the exploration of novel therapeutic strategies. In this study, we developed an injectable multifunctional hydrogel (GEL/BG@Cu + Mg) incorporating Gelatin-Tannic acid/ N-hydroxysuccinimide functionalized polyethylene glycol and Bioactive glass doped with copper and magnesium ions to accelerate the healing of infected wounds. The GEL/BG@Cu + Mg hydrogel composite demonstrates good biocompatibility, degradability, and rapid formation of a protective barrier to stop bleeding. Synergistic bactericidal effects are achieved through the photothermal properties of BG@Cu + Mg and sustained copper ions release, with the latter further promoting angiogenesis. Furthermore, the hydrogel enhances neurogenesis by stimulating axons and Schwann cells in the wound bed through the beneficial effects of magnesium ions. Our results demonstrate that the designed novel multifunctional hydrogel holds tremendous promise for treating infected wounds and allowing regenerative neurogenesis at the wound site, which provides a viable alternative for further improving clinical outcomes.


Assuntos
Antibacterianos , Bandagens , Cobre , Hidrogéis , Neurogênese , Cicatrização , Animais , Neurogênese/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/administração & dosagem , Cicatrização/efeitos dos fármacos , Cobre/química , Cobre/administração & dosagem , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Vidro/química , Magnésio/química , Magnésio/administração & dosagem , Masculino , Polietilenoglicóis/química , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Ratos Sprague-Dawley , Gelatina/química , Humanos
13.
J Mater Chem B ; 12(13): 3282-3291, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38487900

RESUMO

Sonodynamic therapy (SDT), an emerging cancer treatment with significant potential, offers the advantages of non-invasiveness and deep tissue penetrability. The method involves activating sonosensitizers with ultrasound to generate reactive oxygen species (ROS) capable of eradicating cancer cells, addressing the challenge faced by photodynamic therapy (PDT) where conventional light sources struggle to penetrate deep tissues, impacting treatment efficacy. This study addresses prevalent challenges in numerous nanodiagnostic and therapeutic agents, such as intricate synthesis, poor repeatability, low stability, and high cost, by introducing a streamlined one-step assembly method for nanoparticle preparation. Specifically, the sonosensitizer Chlorin e6 (Ce6) and the chemotherapy drug erlotinib are effortlessly combined and self-assembled under sonication, yielding carrier-free nanoparticles (EC-NPs) for non-small cell lung cancer (NSCLC) treatment. The resulting EC-NPs exhibit optimal drug loading capacity, a simplified preparation process, and robust stability both in vitro and in vivo, owing to their carrier-free characteristics. Under the synergistic treatment of sonodynamic therapy and chemotherapy, EC-NPs induce an excess of reactive oxygen in tumor tissue, prompting apoptosis of cancer cells and reducing their proliferative capacity. Both in vitro and in vivo experiments demonstrate superior therapeutic effects of EC-NPs under ultrasound conditions compared to free Ce6. In summary, our research findings highlight that the innovatively designed carrier-free sonosensitizer EC-NPs present a therapeutic option with commendable efficacy and minimal side effects.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Clorofilídeos , Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos
14.
Adv Healthc Mater ; : e2400242, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513263

RESUMO

Dynamic covalent bond hydrogels have demonstrated significant application potential in biomedical fields for their dynamic reversibility. However, the contradiction between the stability and dynamics of the hydrogel restricts its application. Here, utilizing silver sulfadiazine (AgSD) as a catalyst, hyaluronic acid-based hydrogels are constructed through imine bond crosslinking and incorporated disulfide bonds within the same crosslinking chain. It is found that AgSD can accelerate the formation of imine crosslinking bonds to improve the stability of hydrogels, thereby shortening the gelation time by ≈36.9 times, enhancing compression strength and adhesion strength by ≈2.4 times and 1.7 times, respectively, while inhibiting swelling and degradation rates to ≈2.1 times and 3.7 times. Besides, AgSD can coordinate with disulfide bonds to enhance the dynamics of hydrogel, enhancing the hydrogel self-healing efficiency by ≈2.3 times while reducing the relaxation time by ≈25.1 times. Significantly, AgSD imparts remarkable antibacterial properties to the hydrogel, thereby effectively facilitating the healing of bacterial infected wounds. Consequently, introducing AgSD enables hydrogels to possess concurrent stability, dynamics, and antibacterial properties. This strategy of regulating hydrogels by introducing AgSD provides a valuable reference for the application of dynamic covalent bonds.

15.
ACS Appl Mater Interfaces ; 16(13): 15687-15700, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511302

RESUMO

Polyethylene terephthalate (PET) artificial ligaments, renowned for their superior mechanical properties, have been extensively adopted in anterior cruciate ligament (ACL) reconstruction surgeries. However, the inherent bio-inertness of PET introduces formidable barriers to graft-bone integration, a critical aspect of rehabilitation. Previous interventions, ranging from surface roughening to chemical modifications, have aimed to address this challenge; however, consistently effective techniques for inducing graft-bone integration remain scarce. Our study employed advanced surface-coating methodologies to introduce strontium-doped hydroxyapatite (SrHA) onto PET ligaments. Detailed scanning electron microscopy (SEM) examinations revealed a uniform and integrative coating of SrHA on PET fibers. Furthermore, spectroscopic analysis confirmed the steady release of strontium ions from the coated surface under physiological conditions. In-depth cellular studies proved that extracellular strontium emanating from SrHA-coated PET (PET@SrHA) ligaments actively steers the M2 macrophage polarization. Additionally, macrophages (Mφs) manifested a heightened secretion of prohealing cytokines when exposed to PET@SrHA. Subsequent investigations showed that these cytokines acted as mediators, activating integrin signaling pathways among macrophages, vascular endothelial cells, and osteoblasts. As a direct consequence, an increased rate of angiogenesis and osteogenic differentiation was observed, vital for graft-bone integration following ACL reconstruction with PET@SrHA ligaments. From a biochemical standpoint, our results pinpoint strontium ions as influential immunomodulators, sculpting the graft-bone interface's immune environment. This insight presents the SrHA-coating technique as a viable therapeutic strategy, holding sound promise for improving angiogenesis and osseointegration outcomes during ACL reconstruction using PET-based grafts.


Assuntos
Integrinas , Osteogênese , Citocinas , Angiogênese , Células Endoteliais , Hidroxiapatitas/química , Estrôncio/farmacologia , Estrôncio/química , Transdução de Sinais , Íons/farmacologia
16.
Biomacromolecules ; 25(3): 1509-1526, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38376392

RESUMO

The multifaceted process of nerve regeneration following damage remains a significant clinical issue, due to the lack of a favorable regenerative microenvironment and insufficient endogenous biochemical signaling. However, the current nerve grafts have limitations in functionality, as they require a greater capacity to effectively regulate the intricate microenvironment associated with nerve regeneration. In this regard, we proposed the construction of a functional artificial scaffold based on a "two-pronged" approach. The whole system was developed by encapsulating Tazarotene within nanomicelles formed through self-assembly of reactive oxygen species (ROS)-responsive amphiphilic triblock copolymer, all of which were further loaded into a thermosensitive injectable hydrogel. Notably, the hydrogel exhibits obvious temperature sensitivity at a concentration of 6 wt %, and the nanoparticles possess concentration-dependent H2O2-response capability with a controlled release profile in 48 h. The combined strategy promoted the repair of injured peripheral nerves, attributed to the dual role of the materials, which mainly involved providing structural support, modulating the immune microenvironment, and enhancing angiogenesis. Overall, this study opens up intriguing prospects in tissue engineering.


Assuntos
Sistemas de Liberação de Medicamentos , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Engenharia Tecidual , Hidrogéis/farmacologia , Hidrogéis/química , Nervos Periféricos/fisiologia , Regeneração Nervosa
17.
Adv Healthc Mater ; 13(9): e2303336, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38211556

RESUMO

Photodynamic therapy as a burgeoning and non-invasive theranostic technique has drawn great attention in the field of antibacterial treatment but often encounters undesired phototoxicity of photosensitizers during systemic circulation. Herein, a supramolecular substitution strategy is proposed for phototherapy of drug-resistant bacteria and skin flap repair by using macrocyclic p-sulfonatocalix(4)arene (SC4A) as a host, and two cationic aggregation-induced emission luminogens (AIEgens), namely TPE-QAS and TPE-2QAS, bearing quaternary ammonium group(s) as guests. Through host-guest assembly, the obtained complex exhibits obvious blue fluorescence in the solution due to the restriction of free motion of AIEgens and drastically inhibits efficient type I ROS generation. Then, upon the addition of another guest 4,4'-benzidine dihydrochloride, TPE-QAS can be competitively replaced from the cavity of SC4A to restore its pristine ROS efficiency and photoactivity in aqueous solution. The dissociative TPE-QAS shows a high bacterial binding ability with an efficient treatment for methicillin-resistant Staphylococcus aureus (MRSA) in dark and light irradiation. Meanwhile, it also exhibits an improved survival rate for MRSA-infected skin flap transplantation and largely accelerates the healing process. Thus, such cascaded host-guest assembly is an ideal platform for phototheranostics research.


Assuntos
Calixarenos , Staphylococcus aureus Resistente à Meticilina , Fenóis , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Fototerapia , Fotoquimioterapia/métodos
18.
Small ; 20(26): e2310194, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38279612

RESUMO

Spinal cord injury (SCI) often leads to cell death, vascular disruption, axonal signal interruption, and permanent functional damage. Currently, there are no clearly effective therapeutic options available for SCI. Considering the inhospitable SCI milieu typified by ischemia, hypoxia, and restricted neural regeneration, a novel injectable hydrogel system containing conductive black phosphorus (BP) nanosheets within a lipoic acid-modified chitosan hydrogel matrix (LAMC) is explored. The incorporation of tannic acid (TA)-modified BP nanosheets (BP@TA) into the LAMC hydrogel matrix significantly improved its conductivity. Further, by embedding a bicyclodextrin-conjugated tazarotene drug, the hydrogel showcased amplified angiogenic potential in vitro. In a rat model of complete SCI, implantation of LAMC/BP@TA hydrogel markedly improved the recovery of motor function. Immunofluorescence evaluations confirmed that the composite hydrogel facilitated endogenous angiogenesis and neurogenesis at the injury site. Collectively, this work elucidates an innovative drug-incorporated hydrogel system enriched with BP, underscoring its potential to foster vascular and neural regeneration.


Assuntos
Hidrogéis , Regeneração Nervosa , Fósforo , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Fósforo/química , Ratos , Ratos Sprague-Dawley , Nanoestruturas/química , Neovascularização Fisiológica/efeitos dos fármacos , Injeções
19.
Regen Biomater ; 11: rbad101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173771

RESUMO

As a superior alternative to sutures, tissue adhesives have been developed significantly in recent years. However, existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces, bond weakly in wet environments and lack bioactivity. In this study, a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion. The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments, which can effectively improve the wet bonding strength. This citrate-based polyurethane adhesive provides rapid, non-invasive, liquid-tight and seamless closure of skin incisions, overcoming the limitations of sutures and commercial tissue adhesives. In addition, it exhibits biocompatibility, biodegradability and hemostatic properties. The degradation product citrate could promote the process of angiogenesis and accelerate wound healing. This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.

20.
Adv Healthc Mater ; 13(6): e2302879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37927129

RESUMO

Bone infection is one of the most devastating orthopedic outcomes, and overuse of antibiotics may cause drug-resistance problems. Photothermal therapy(PTT) is a promising antibiotic-free strategy for treating infected bone defects. Considering the damage to normal tissues and cells caused by high-temperature conditions in PTT, this study combines the antibacterial property of Cu to construct a multi-functional Cu2 O@MXene/alpha-tricalcium phosphate (α-TCP) scaffold support with internal and external sandwiching through 3D printing technology. On the "outside", the excellent photothermal property of Ti3 C2 MXene is used to carry out the programmed temperature control by the active regulation of 808 nm near-infrared (NIR) light. On the "inside", endogenous Cu ions gradually release and the release accumulates within the safe dose range. Specifically, programmed temperature control includes brief PTT to rapidly kill early bacteria and periodic low photothermal stimulation to promote bone tissue growth, which reduces damage to healthy cells and tissues. Meanwhile, Cu ions are gradually released from the scaffold over a long period of time, strengthening the antibacterial effect of early PTT, and promoting angiogenesis to improve the repair effect. PTT combined with Cu can deliver a new idea forinfected bone defects through in vitro and vivo application.


Assuntos
Antibacterianos , Bactérias , Elementos de Transição , Antibacterianos/farmacologia , Nitritos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...