Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554859

RESUMO

WO3 nanorods and xWO3@TiO2 (WO3/TiO2 mass ratio (x) = 1-5) photocatalysts were synthesized using the hydrothermal and sol-gel methods, respectively. The photocatalytic activities of xWO3@TiO2 for NH3 oxidation first increased and then decreased with a rise in TiO2 content. Among them, the heterostructured 3WO3@TiO2 photocatalyst showed the highest NH3 conversion (58 %) under the simulated sunlight irradiation, which was about two times higher than those of WO3 and TiO2. Furthermore, the smallest amounts of by-products (i.e., NO and NO2) were produced over 3WO3@TiO2. The enhancement in photocatalytic performance (i.e., NH3 conversion and N2 selectivity) of 3WO3@TiO2 was mainly attributed to the formed interfacial electric field between WO3 and TiO2, which promoted efficient separation and transfer of photogenerated charge carriers. Based on the results of reactive species trapping and active radical detection, photocatalytic oxidation of NH3 over 3WO3@TiO2 was governed by the photogenerated holes and superoxide radicals. This work combines two strategies of morphological regulation and interfacial electric field construction to simultaneously improve light utilization and photogenerated charge separation efficiency, which promotes the development of full-spectrum photocatalysts for the removal of ammonia.


Assuntos
Amônia , Titânio , Titânio/química , Oxirredução , Luz Solar
2.
J Environ Sci (China) ; 138: 153-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135384

RESUMO

The PdPtVOx/CeO2-ZrO2 (PdPtVOx/CZO) catalysts were obtained by using different approaches, and their physical and chemical properties were determined by various techniques. Catalytic activities of these materials in the presence of H2O or SO2 were evaluated for the oxidation of ethylbenzene (EB). The PdPtVOx/CZO sample exhibited high catalytic activity, good hydrothermal stability, and reversible sulfur dioxide-poisoning performance, over which the specific reaction rate at 160°C, turnover frequency at 160°C (TOFPd or Pt), and apparent activation energy were 72.6 mmol/(gPt⋅sec) or 124.2 mmol/(gPd⋅sec), 14.2 sec-1 (TOFPt) or 13.1 sec-1 (TOFPd), and 58 kJ/mol, respectively. The large EB adsorption capacity, good reducibility, and strong acidity contributed to the good catalytic performance of PdPtVOx/CZO. Catalytic activity of PdPtVOx/CZO decreased when 50 ppm SO2 or (1.0 vol.% H2O + 50 ppm SO2) was added to the feedstock, but was gradually restored to its initial level after the SO2 was cut off. The good reversible sulfur dioxide-resistant performance of PdPtVOx/CZO was associated with the facts: (i) the introduction of SO2 leads to an increase in surface acidity; (ii) V can adsorb and activate SO2, thus accelerating formation of the SOx2- (x = 3 or 4) species at the V and CZO sites, weakening the adsorption of sulfur species at the PdPt active sites, and hence protecting the PdPt active sites to be not poisoned by SO2. EB oxidation over PdPtVOx/CZO might take place via the route of EB â†’ styrene â†’ phenyl methyl ketone â†’ benzaldehyde â†’ benzoic acid â†’ maleic anhydride â†’ CO2 and H2O.


Assuntos
Derivados de Benzeno , Dióxido de Enxofre , Dióxido de Enxofre/química , Oxirredução , Catálise , Estresse Oxidativo , Amônia/química
3.
J Am Chem Soc ; 145(29): 15869-15878, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37449950

RESUMO

Designing new synthesis routes to fabricate highly thermally durable precious metal single-atom catalysts (SACs) is challenging in industrial applications. Herein, a general strategy is presented that starts from dual-metal nanocrystals (NCs), using bimetallic NCs as a facilitator to spontaneously convert a series of noble metals to single atoms on aluminum oxide. The metal single atoms are captured by cation defects in situ formed on the surface of the inverse spinel (AB2O4) structure, which process provides numerous anchoring sites, thus facilitating generation of the isolated metal atoms that contributes to the extraordinary thermodynamic stability. The Pd1/AlCo2O4-Al2O3 shows not only improved low-temperature activity but also unprecedented (hydro)thermal stability for CO and propane oxidation under harsh aging conditions. Furthermore, our strategy exhibits a small scaling-up effect by the simple physical mixing of commercial metal oxide aggregates with Al2O3. The good regeneration between oxidative and reductive atmospheres of these ionic palladium species makes this catalyst system of potential interest for emissions control.

4.
J Am Chem Soc ; 145(20): 11110-11120, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191364

RESUMO

Improving the product selectivity meanwhile restraining deep oxidation still remains a great challenge over the supported Pd-based catalysts. Herein, we demonstrate a universal strategy where the surface strong oxidative Pd sites are partially covered by the transition metal (e. g., Cu, Co, Ni, and Mn) oxide through thermal treatment of alloys. It could effectively inhibit the deep oxidation of isopropanol and achieve the ultrahigh selectivity (>98%) to the target product acetone in a wide temperature range of 50-200 °C, even at 150-200 °C with almost 100% isopropanol conversion over PdCu1.2/Al2O3, while an obvious decline in acetone selectivity is observed from 150 °C over Pd/Al2O3. Furthermore, it greatly improves the low-temperature catalytic activity (acetone formation rate at 110 °C over PdCu1.2/Al2O3, 34.1 times higher than that over Pd/Al2O3). The decrease of surface Pd site exposure weakens the cleavage for the C-C bond, while the introduction of proper CuO shifts the d-band center (εd) of Pd upward and strengthens the adsorption and activation of reactants, providing more reactive oxygen species, especially the key super oxygen species (O2-) for selective oxidation, and significantly reducing the barrier of O-H and ß-C-H bond scission. The molecular-level understanding of the C-H and C-C bond scission mechanism will guide the regulation of strong oxidative noble metal sites with relatively inert metal oxide for the other selective catalytic oxidation reactions.

5.
J Environ Sci (China) ; 126: 263-274, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503754

RESUMO

The cryptomelane-type manganese oxide (OMS-2)-supported Co (xCo/OMS-2; x = 5, 10, and 15 wt.%) catalysts were prepared via a pre-incorporation route. The as-prepared materials were used as catalysts for catalytic oxidation of toluene (2000 ppmV). Physical and chemical properties of the catalysts were measured using the X-ray diffraction (XRD), Fourier transform infrared spectroscopic (FT-IR), scanning electron microscopic (SEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature-programmed reduction (H2-TPR) techniques. Among all of the catalysts, 10Co/OMS-2 performed the best, with the T90%, specific reaction rate at 245°C, and turnover frequency at 245°C (TOFCo) being 245°C, 1.23 × 10-3 moltoluene/(gcat·sec), and 11.58 × 10-3 sec-1 for toluene oxidation at a space velocity of 60,000 mL/(g·hr), respectively. The excellent catalytic performance of 10Co/OMS-2 were due to more oxygen vacancies, enhanced redox ability and oxygen mobility, and strong synergistic effect between Co species and OMS-2 support. Moreover, in the presence of poisoning gases CO2, SO2 or NH3, the activity of 10Co/OMS-2 decreased for the carbonate, sulfate and ammonia species covered the active sites and oxygen vacancies, respectively. After the activation treatment, the catalytic activity was partly recovered. The good low-temperature reducibility of 10Co/OMS-2 could also facilitate the redox process accompanied by the consecutive electron transfer between the adsorbed O2 and the cobalt or manganese ions. In the oxidation process of toluene, the benzoic and aldehydic intermediates were first generated, which were further oxidized to the benzoate intermediate that were eventually converted into H2O and CO2.


Assuntos
Dióxido de Carbono , Cobalto , Espectroscopia de Infravermelho com Transformada de Fourier , Tolueno , Oxigênio
6.
J Environ Sci (China) ; 124: 570-590, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182164

RESUMO

Semiconductor photocatalytic technology has shown great prospects in converting solar energy into chemical energy to mitigate energy crisis and solve environmental pollution problems. The key issue is the development of high-efficiency photocatalysts. Various strategies in the state-of-the-art advancements, such as heterostructure construction, heteroatom doping, metal/single atom loading, and defect engineering, have been presented for the graphitic carbon nitride (g-C3N4)-based nanocomposite catalysts to design their surface chemical environments and internal electronic structures to make them more suitable for different photocatalytic applications. In this review, nanoarchitecture design, synthesis methods, photochemical properties, potential photocatalytic applications, and related reaction mechanisms of the modified high-efficiency carbon nitride-based photocatalysts were briefly summarized. The superior photocatalytic performance was identified to be associated with the enhanced visible-light response, fast photoinduced electron-hole separation, efficient charge migration, and increased unsaturated active sites. Moreover, the further advance of the visible-light harvesting and solar-to-energy conversions are proposed.

7.
Bioresour Technol ; 366: 128207, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328173

RESUMO

This study constructed two thiosulfate-driven autotrophic denitrification biofilters filled with volcanic rock (VR-BF), sponge iron and volcanic rock (SIVR-BF), respectively. The nitrate removal load (3200 g/m3/d) and efficiency (98 %) of SIVR-BF were higher than those of VR-BF. The removal of phosphate in SIVR-BF was mainly through forming FePO4 and Fe3(PO4)2(OH)2. Sulfur and iron cycles in SIVR-BF contributed to Fe (II)/Fe (III) electron shuttle, as well as S2-, S0, Sn2- electron buffer and energy storage, which improved nitrate removal and electron utilization. The formation of multi-path collaborative denitrification dominated by sulfur autotrophic denitrification (64.2 âˆ¼ 89.6 %) in SIVR-BF. The other denitrification pathways, such as iron autotrophic denitrification, which buffered pH and reduced sulfate production. Thiobacillus (38.6 %) and Ferritrophicum (25.3 %) were the dominant genus of VR-BF and SIVR-BF, respectively, which played crucial roles in autotrophic denitrification of iron and sulfur. SIVR-BF was a promising process to realize iron-sulfur coupling autotrophic denitrification and phosphate removal.


Assuntos
Desnitrificação , Nitratos , Nitratos/metabolismo , Tiossulfatos , Ferro , Fosfatos , Reatores Biológicos , Processos Autotróficos , Enxofre , Óxidos de Nitrogênio , Nitrogênio
8.
Environ Sci Technol ; 56(23): 17341-17351, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36413583

RESUMO

The volatile organic compounds (VOCs) from cooking oil fumes are very complex and do harm to humans and the environment. Herein, we develop the high-efficiency and energy-saving synergistic photothermocatalytic oxidation approach to eliminate the mixture of heptane and hexanal, the representative VOCs with high concentrations in cooking oil fumes. The Pt/CeO2/TiO2 catalyst with nanosized Pt particles was prepared by the simple hydrothermal and impregnation methods, and the physicochemical properties of the catalyst were measured using numerous techniques. The Pt/CeO2/TiO2 catalyst eliminated the VOC mixture at low light intensity (100 mW cm-2) and low temperature (200 °C). In addition, it showed 25 h of catalytic stability and water resistance (water concentration up to 20 vol %) at 140 or 190 °C. It is concluded that O2 picked up the electrons from Pt to generate the •O2- species, which were transformed to the O22- and O- species after the rise in temperature. In the presence of water, the •OH species induced by light irradiation on the catalyst surface and the •OOH species formed via the thermal reaction were both supplementary oxygen species for VOC oxidation. The synergistic interaction of photo- and thermocatalysis was generated by the reactive oxygen species.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/química , Espécies Reativas de Oxigênio , Gases , Culinária , Oxigênio , Água
9.
J Hazard Mater ; 439: 129612, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35872456

RESUMO

The elimination of volatile organic compounds (VOCs) emitted from the process of industry production is of great significance to improve the atmospheric environment. Herein the catalytic oxidation of the toluene and iso-hexane mixture, as the typical components from furniture paint industry, and the enhancement in the catalytic stability for toluene oxidation were investigated in detail. The formation rate of active oxygen species was very important for the development of the catalyst with high catalytic stability. Compared with the Pt/M catalyst, the Pt-Cu/M catalyst owned stronger ability of VOCs adsorption and gaseous oxygen activation by introducing additional sites for activating O2. The Langmuir-Hinshelwood (adsorbed oxygen) and Mars-van Krevelen (lattice oxygen) mechanism existed in toluene oxidation over the present Pt/M and Pt-Cu/M catalysts, respectively. The change in the involved active oxygen species during toluene oxidation was resulted from the Pt-Cu alloy structure. In addition to the adsorption of O2, a part of active lattice oxygen species can also be replenished by the migration of bulk lattice oxygen over Pt-Cu/M. With a rise in the reaction temperature, weakly adsorbed iso-hexane could be timely reacted with the more active lattice oxygen species to keep the catalytic stability over the Pt/M and Pt-Cu/M catalysts. Generally, we not only prepared a promising material for the catalytic removal of VOCs from the furniture paint industry, but also provided a new strategy for the generation of active oxygen species, making the catalyst exhibit high catalytic oxidation stability.

10.
Environ Sci Technol ; 56(16): 11739-11749, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880312

RESUMO

The compositions of volatile organic compounds (VOCs) under actual industrial conditions are often complex; especially, the interaction of intermediate products easily leads to more toxic emissions that are harmful to the atmospheric environment and human health. Herein, we report a comparative investigation on 1,2-dichloroethane (1,2-DCE) and (1,2-DCE + toluene) oxidation over the Ru/TiO2, phosphotungstic acid (HPW)-modified Ru/TiO2, and oxygen vacancy-rich Ru/TiOx catalysts. The doping of HPW successfully introduced the 1,2-DCE adsorption sites to promote its oxidation and exhibited outstanding water resistance. For the mixed VOCs, Ru/HPW-TiO2 promoted the preferential and superfluous adsorption of toluene and resulted in the inhibition of 1,2-DCE degradation. Therefore, HPW modification is a successful strategy in catalytic 1,2-DCE oxidation, but Brønsted acid sites tend to adsorb toluene in the mixed VOC oxidation. The Ru/TiOx catalyst exhibited excellent activity and stability in the oxidation of mixed VOCs and could inhibit the generation of byproducts and Cl2 compared with the Ru/HPW-TiO2 catalyst. Compared with the Brønsted acid modification, the oxygen vacancy-rich catalysts are significantly suitable for the oxidation of multicomponent VOCs.


Assuntos
Tolueno , Compostos Orgânicos Voláteis , Catálise , Dicloretos de Etileno , Humanos , Oxirredução , Estresse Oxidativo , Oxigênio , Titânio , Água
11.
Environ Sci Technol ; 56(13): 9672-9682, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35728271

RESUMO

Pt-based catalysts can be poisoned by the chlorine formed during the oxidation of multicomponent volatile organic compounds (VOCs) containing chlorinated VOCs. Improving the low-temperature chlorine resistance of catalysts is important for industrial applications, although it is yet challenging. We hereby demonstrate the essential catalytic roles of a bifunctional catalyst with an atomic-scale metal/oxide interface constructed by an intermetallic compound nanocrystal. Introducing trichloroethylene (TCE) exhibits a less negative effect on the catalytic activity of the bimetallic catalyst for o-xylene oxidation, and the partial deactivation caused by TCE addition is reversible, suggesting that the bimetallic, HCl-etched Pt3Sn(E)/CeO2 catalyst possesses much stronger chlorine resistance than the conventional Pt/CeO2 catalyst. On the site-isolated Pt-Sn catalyst, the presence of aromatic hydrocarbon significantly inhibits the adsorption strength of TCE, resulting in excellent catalytic stability in the oxidation of the VOC mixture. Furthermore, the large amount of surface-adsorbed oxygen species generated on the electronegative Pt is highly effective for low-temperature C-Cl bond dissociation. The adjacent promoter (Sn-O) possesses the functionality of acid sites to provide sufficient protons for HCl formation over the bifunctional catalyst, which is considered critical to maintaining the reactivity of Pt by removing Cl and decreasing the polychlorinated byproducts.

12.
J Hazard Mater ; 437: 129358, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35716566

RESUMO

The supported palladium catalysts perform well in the oxidative removal of hazardous aromatic hydrocarbons. However, water vapor can seriously deactivate the catalysts especially in the low-temperature regime. Hence, improving moisture resistance of the Pd-based catalysts is full of challenge in the removal of aromatics. Herein, we report a new type of Pd@NC/BN catalysts featured with nitrogen-doped carbon layers modified Pd supported on hexagonal boron nitride (h-BN), and the relationship between structure and water resistance of the catalysts. The results show that in the presence of 10 vol% H2O in the feedstock, the Pd@NC/BN catalyst could effectively oxidize o-xylene (with an almost 87% removal efficiency), whereas o-xylene conversion declined from 69% to 20% over the conventional Pd/Al2O3 at a reaction temperature of 210 °C and a space velocity of 40,000 mL/(g h). The adsorption of H2O was significantly inhibited on the nitrogen-doped carbon layers due to the hydrophobic nature. Meanwhile, the oxygen species active for o-xylene oxidation were not only from the adsorbed gas-phase oxygen but also from the new active oxygen (*OOH and *OH) species that were generated via the interaction of O2 and H2O in the presence of water in the feedstock. It is concluded that the reactive oxygen species that accelerated the activation and cleavage of C-H bonds significantly facilitated the conversion of key intermediate species (from benzaldehyde to benzoic acid), thus playing a decisive role in o-xylene oxidation. The present work provides a direction for developing the superior water resistance catalysts with hydrophobic nature and good water activation ability in the oxidative removal of volatile organic compounds.

13.
Environ Sci Technol ; 56(12): 8722-8732, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35579250

RESUMO

Photothermal synergistic catalytic oxidation of toluene over single-atom Pt catalysts was investigated. Compared with the conventional thermocatalytic oxidation in the dark, toluene conversion and CO2 yield over 0.39Pt1/CuO-CeO2 under simulated solar irradiation (λ = 320-2500 nm, optical power density = 200 mW cm-2) at 180 °C could be increased about 48%. An amount of CuO was added to CeO2 to disperse single-atom Pt with a maximal Pt loading of 0.83 wt %. The synergistic effect between photo- and thermocatalysis is very important for the development of new pollutant treatment technology with high efficiency and low energy consumption. Both light and heat played an important role in the present photothermal synergistic catalytic oxidation. 0.39Pt1/CuO-CeO2 showed good redox performance and excellent optical properties and utilized the full-spectrum solar energy. Light illumination induced the generation of reactive oxygen species (•OH and •O2-), which accelerated the transformation of intermediates, promoted the release of active sites on the catalyst surface, and improved the oxidation reaction.

14.
Angew Chem Int Ed Engl ; 61(27): e202203827, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35419926

RESUMO

The controlled oxidation of alcohols to the corresponding ketones or aldehydes via selective cleavage of the ß-C-H bond of alcohols under mild conditions still remains a significant challenge. Although the metal/oxide interface is highly active and selective, the interfacial sites fall far behind the demand, due to the large and thick support. Herein, we successfully develop a unique Au-CuO Janus structure (average particle size=3.8 nm) with an ultrathin CuO layer (0.5 nm thickness) via a bimetal in situ activation and separation strategy. The resulting Au-CuO interfacial sites prominently enhance isopropanol adsorption and decrease the energy barrier of ß-C-H bond scission from 1.44 to 0.01 eV due to the strong affinity between the O atom of CuO and the H atom of isopropanol, compared with Au sites alone, thereby achieving ultrahigh acetone selectivity (99.3 %) over 1.1 wt % AuCu0.75 /Al2 O3 at 100 °C and atmospheric pressure with 97.5 % isopropanol conversion. Furthermore, Au-CuO Janus structures supported on SiO2 , TiO2 or CeO2 exhibit remarkable catalytic performance, and great promotion in activity and acetone selectivity is achieved as well for other reducible oxides derived from Fe, Co, Ni and Mn. This study should help to develop strategies for maximized interfacial site construction and structure optimization for efficient ß-C-H bond activation.

15.
Angew Chem Int Ed Engl ; 61(27): e202201655, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35429218

RESUMO

Improving the low-temperature water-resistance of methane combustion catalysts is of importance for industrial applications and it is challenging. A stepwise strategy is presented for the preparation of atomically dispersed tungsten species at the catalytically active site (Pd nanoparticles). After an activation process, a Pd-O-W1 -like nanocompound is formed on the PdO surface with an atomic scale interface. The resulting supported catalyst has much better water resistance than the conventional catalysts for methane combustion. The integrated characterization results confirm that catalytic combustion of methane involves water, proceeding via a hydroperoxyl-promoted reaction mechanism on the catalyst surface. The results of density functional theory calculations indicate an upshift of the d-band center of palladium caused by electron transfer from atomically dispersed tungsten, which greatly facilitates the adsorption and activation of oxygen on the catalyst.

16.
J Hazard Mater ; 431: 128518, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219061

RESUMO

The layered manganese oxide (δ-MnO2)-supported reduced graphene oxide (rGO)-promoted silver catalysts (xAg- yrGO/δ-MnO2; x and y are the Ag and rGO contents (wt%), respectively) were prepared via a polyvinyl alcohol-protected reduction route. Physicochemical properties of these materials were determined using the numerous techniques, and their catalytic activities were evaluated for the oxidation of CO and ethyl acetate. It is found that the loading of rGO as an electron transfer promoter could significantly strengthen the metal-support interaction (SMSI) between Ag and δ-MnO2 and increase specific surface area of the sample, hence improving catalytic performance of the sample. Activity evaluation reveals that 1Ag- 1.0rGO/δ-MnO2 showed the best catalytic activity and the lowest apparent activation energy (Ea), giving a T90% of 140 °C and an Ea of 42.7 kJ/mol for CO oxidation, and a T90% of 160 °C and an Ea of 39.8 kJ/mol for ethyl acetate oxidation at space velocity (SV) = 60,000 mL/(g h). The good performance of 1Ag- 1.0rGO/δ-MnO2 was associated with its high Mn3+/Mn4+ or Oads/Olatt molar ratio, good low-temperature reducibility, and strong SMSI between Ag and δ-MnO2. The in situ DRIFTS characterization demonstrates that the carbonate and acetate species were the main intermediate products in CO and ethyl acetate oxidation over 1Ag- 1.0rGO/δ-MnO2, respectively. The 1Ag- 1.0rGO/δ-MnO2 sample was not significantly altered in physicochemical property after 55 h of stability test, but its activity decreased in the presence of water vapor, especially such an effect on ethyl acetate oxidation was more obvious, which was possibly due to the competitive adsorption of water and reactants on the catalyst surface.

17.
J Hazard Mater ; 424(Pt A): 127337, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600382

RESUMO

Manganese oxide supported Pt single atoms (Pt1/MnOx) are prepared by the molten salt method. Catalytic oxidation of toluene and iso-hexane, typical emissions from furniture paints industry, is tested. Pt1/MnOx shows poor and high catalytic stability for toluene and iso-hexane oxidation, respectively. Enhancement in the catalytic stability for toluene oxidation is observed after the hydrogen reduction treatment of Pt1/MnOx at 200 °C. The hydrogen treated catalyst possesses the weaker Mn-O bonds and lower coordination number of PtO, with superior mobility of lattice oxygen and appropriate toluene adsorption. Balancing lattice oxygen mobility and volatile organic compounds adsorption is important for the catalytic stability of Pt1/MnOx. For the oxidation of toluene and iso-hexane mixture, owing to the competitive adsorption, iso-hexane oxidation is greatly inhibited, while toluene oxidation is not influenced. The present Pt1/MnOx catalyst holds promising prospect in furniture paints industry applications because of high catalytic stability and water resistance ability.

18.
J Environ Sci (China) ; 112: 258-268, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955210

RESUMO

The octahedral molecular sieve (OMS-2)-supported Fe (xFe/OMS-2: x = 1, 3, 5, and 10) catalysts were prepared using the pre-incorporation method. Physicochemical properties of the as-synthesized materials were characterized by means of various techniques, and their catalytic activities for CO, ethyl acetate, and toluene oxidation were evaluated. Among all of the samples, performed the best, with the reaction temperature required to achieve 90% conversion (T90%) being 160°C for CO oxidation, 210°C for ethyl acetate oxidation, and 285°C for toluene oxidation. Such a good catalytic performance of 5Fe/OMS-2 was associated with its high (Mn3+ + Mn2+) content and adsorbed oxygen species concentration, and good low-temperature reducibility and lattice oxygen mobility as well as strong interaction between Fe and OMS-2. In addition, catalytic mechanisms of the oxidation of three pollutants over the 5Fe/OMS-2 catalyst were also studied. It was found that CO, ethyl acetate or toluene was first adsorbed, then the related intermediates were formed, and finally the formed intermediates were completely converted into CO2 and H2O.


Assuntos
Monóxido de Carbono , Tolueno , Acetatos , Catálise , Oxirredução
19.
Environ Sci Technol ; 55(21): 14906-14916, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34633800

RESUMO

Ru-based catalysts for catalytic combustion of high-toxicity Cl-containing volatile organic compounds are inclined to produce Cl2 instead of ideal HCl due to the Deacon reaction. We herein reported that the three-dimensionally ordered macroporous (3DOM) WOx-supported RuP nanocatalyst greatly improved HCl selectivity (at 400 °C, increased from 66.0% over Ru/3DOM WOx to 96.4% over RuP/3DOM WOx) and reduced chlorine-containing byproducts for 1,2-dichloroethane (1,2-DCE) oxidation. P-doping enhanced the number of structural hydroxyl groups and Brønsted acid sites. The isotopic 1,2-DCE temperature-programmed desorption experiment in the presence of H218O indicated the generation of a new active oxygen species 16O18O that participated in the reaction. Generally, P-doping and H2O introduction could promote the exchange reaction between Cl and hydroxyl groups, rather than oxygen defects, and then benefit the production of HCl and reduce the generation of other chlorine species or Cl2, via the reaction processes of C2H3Cl → alcohol → aldehyde → carboxylic acids.


Assuntos
Dicloretos de Etileno , Catálise , Oxirredução , Espécies Reativas de Oxigênio
20.
Nanomaterials (Basel) ; 11(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34685077

RESUMO

As a heavy metal, Pb is one component in coal-fired flue gas and is widely considered to have a strong negative effect on catalyst activity in the selective catalytic reduction of NOx by NH3 (NH3-SCR). In this paper, we investigated the deactivation mechanism of the Mo-Ce/Zr-PILC catalyst induced by Pb in detail. We found that NO conversion over the 3Mo4Ce/Zr-PILC catalyst decreased greatly after the addition of Pb. The more severe deactivation induced by Pb was attributed to low surface area, lower amounts of chemisorbed oxygen species and surface Ce3+, and lower redox ability and surface acidity (especially a low number of Brønsted acid sites). Furthermore, the addition of Pb inhibited the formation of highly active intermediate nitrate species generated on the surface of the catalyst, hence decreasing the NH3-SCR activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...