Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(6): 848-856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831044

RESUMO

The de novo synthesis of genomes has made unprecedented progress and achieved milestones, particularly in bacteria and yeast. However, the process of synthesizing a multicellular plant genome has not progressed at the same pace, due to the complexity of multicellular plant genomes, technical difficulties associated with large genome size and structure, and the intricacies of gene regulation and expression in plants. Here we outline the bottom-up design principles for the de novo synthesis of the Physcomitrium patens (that is, earthmoss) genome. To facilitate international collaboration and accessibility, we have developed and launched a public online design platform called GenoDesigner. This platform offers an intuitive graphical interface enabling users to efficiently manipulate extensive genome sequences, even up to the gigabase level. This tool is poised to greatly expedite the synthesis of the P. patens genome, offering an essential reference and roadmap for the synthesis of plant genomes.


Assuntos
Bryopsida , Genoma de Planta , Bryopsida/genética , Biologia Sintética/métodos , Software
3.
Imeta ; 3(2): e182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882487

RESUMO

The Microbiome Protocols eBook (MPB) serves as a crucial bridge, filling gaps in microbiome protocols for both wet experiments and data analysis. The first edition, launched in 2020, featured 152 meticulously curated protocols, garnering widespread acclaim. We now extend a sincere invitation to researchers to participate in the upcoming 2nd version of MPB, contributing their valuable protocols to advance microbiome research.

4.
Imeta ; 3(2): e168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882485

RESUMO

Deoxyribonucleic acid (DNA) has been suggested as a very promising medium for data storage in recent years. Although numerous studies have advocated for DNA data storage, its practical application remains obscure and there is a lack of a user-oriented platform. Here, we developed a DNA data storage platform, named Storage-D, which allows users to convert their data into DNA sequences of any length and vice versa by selecting algorithms, error-correction, random-access, and codec pin strategies in terms of their own choice. It incorporates a newly designed "Wukong" algorithm, which provides over 20 trillion codec pins for data privacy use. This algorithm can also control GC content to the selected standard, as well as adjust the homopolymer run length to a defined level, while maintaining a high coding potential of ~1.98 bis/nt, allowing it to outperform previous algorithms. By connecting to a commercial DNA synthesis and sequencing platform with "Storage-D," we successfully stored "Diagnosis and treatment protocol for COVID-19 patients" into 200 nt oligo pools in vitro, and 500 bp genes in vivo which replicated in both normal and extreme bacteria. Together, this platform allows for practical and personalized DNA data storage, potentially with a wide range of applications.

6.
Viruses ; 16(5)2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38793541

RESUMO

In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.


Assuntos
SARS-CoV-2 , Humanos , Animais , Virulência , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , Contenção de Riscos Biológicos , COVID-19/virologia , Antivirais/farmacologia
7.
Small Methods ; : e2301585, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807543

RESUMO

DNA-based data storage is a new technology in computational and synthetic biology, that offers a solution for long-term, high-density data archiving. Given the critical importance of medical data in advancing human health, there is a growing interest in developing an effective medical data storage system based on DNA. Data integrity, accuracy, reliability, and efficient retrieval are all significant concerns. Therefore, this study proposes an Effective DNA Storage (EDS) approach for archiving medical MRI data. The EDS approach incorporates three key components (i) a novel fraction strategy to address the critical issue of rotating encoding, which often leads to data loss due to single base error propagation; (ii) a novel rule-based quaternary transcoding method that satisfies bio-constraints and ensure reliable mapping; and (iii) an indexing technique designed to simplify random search and access. The effectiveness of this approach is validated through computer simulations and biological experiments, confirming its practicality. The EDS approach outperforms existing methods, providing superior control over bio-constraints and reducing computational time. The results and code provided in this study open new avenues for practical DNA storage of medical MRI data, offering promising prospects for the future of medical data archiving and retrieval.

8.
ACS Sens ; 9(6): 3150-3157, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717584

RESUMO

Tracking trace protein analytes in precision diagnostics is an ongoing challenge. Here, we developed an ultrasensitive detection method for the detection of SARS-CoV-2 nucleocapsid (N) protein by combining enzyme-linked immunosorbent assay (ELISA) with the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) system. First, the SARS-CoV-2 N protein bound by the capture antibody adsorbed on the well plate was sequentially coupled with the primary antibody, biotinylated secondary antibody, and streptavidin (SA), followed by biotin primer binding to SA. Subsequently, rolling circle amplification was initiated to generate ssDNA strands, which were targeted by CRISPR/Cas12a to cleave the FAM-ssDNA-BHQ1 probe in trans to generate fluorescence signals. We observed a linear relationship between fluorescence intensity and the logarithm of N protein concentration ranging from 3 fg/mL to 3 × 107 fg/mL. The limit of detection (LOD) was 1 fg/mL, with approximately nine molecules in 1 µL of the sample. This detection sensitivity was 4 orders magnitude higher than that of commercially available ELISA kits (LOD: 5.7 × 104 fg/mL). This method was highly specific and sensitive and could accurately detect SARS-CoV-2 pseudovirus and clinical samples, providing a new approach for ultrasensitive immunoassay of protein biomarkers.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Limite de Detecção , SARS-CoV-2 , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio/métodos , COVID-19/diagnóstico , COVID-19/virologia , Sistemas CRISPR-Cas/genética , Fosfoproteínas/imunologia , Fosfoproteínas/química , Proteínas Associadas a CRISPR/química , Endodesoxirribonucleases/química , Proteínas do Nucleocapsídeo/imunologia , Proteínas de Bactérias
9.
Cell Syst ; 15(3): 264-274.e9, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460522

RESUMO

Functionalizing materials with biomacromolecules such as enzymes has broad applications in biotechnology and biomedicine. Here, we introduce a grafting method mediated by living cells to functionalize materials. We use polymeric scaffolds to trap engineered bacteria and micron-sized particles with chemical groups serving as active sites for grafting. The bacteria synthesize the desired protein for grafting and autonomously lyse to release it. The released functional moieties are locally grafted onto the active sites, generating the materials engineered by living grafting (MELGs). MELGs are resilient to perturbations because of both the bonding and the regeneration of functional domains synthesized by living cells. The programmability of the bacteria enables us to fabricate MELGs that can respond to external input, decompose a pollutant, reconstitute synthetic pathways for natural product synthesis, and purify mismatched DNA. Our work establishes a bacteria-assisted grafting strategy to functionalize materials with a broad range of biological activities in an integrated, flexible, and modular manner. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Biotecnologia , Engenharia Genética , Proteínas , Biologia Sintética , Bactérias/genética
10.
Cell Rep ; 43(2): 113742, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38324449

RESUMO

In eukaryotic genomes, rDNA generally resides as a highly repetitive and dynamic structure, making it difficult to study. Here, a synthetic rDNA array on chromosome III in budding yeast was constructed to serve as the sole source of rRNA. Utilizing the loxPsym site within each rDNA repeat and the Cre recombinase, we were able to reduce the copy number to as few as eight copies. Additionally, we constructed strains with two or three rDNA arrays and found that the presence of multiple arrays did not affect the formation of a single nucleolus. Although alteration of the position and number of rDNA arrays did impact the three-dimensional genome structure, the additional rDNA arrays had no deleterious influence on cell growth or transcriptomes. Overall, this study sheds light on the high plasticity of rDNA organization and opens up opportunities for future rDNA engineering.


Assuntos
Saccharomycetales , Saccharomycetales/genética , Ciclo Celular , Nucléolo Celular , Proliferação de Células , DNA Ribossômico/genética
11.
Adv Sci (Weinh) ; 11(15): e2305921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332565

RESUMO

DNA has emerged as an appealing material for information storage due to its great storage density and durability. Random reading and rewriting are essential tasks for practical large-scale data storage. However, they are currently difficult to implement simultaneously in a single DNA-based storage system, strongly limiting their practicability. Here, a "Cell Disk" storage system is presented, achieving high-density in vivo DNA data storage that enables both random reading and rewriting. In this system, each yeast cell is used as a chamber to store information, similar to a "disk block" but with the ability to self-replicate. Specifically, each genome of yeast cell has a customized CRISPR/Cas9-based "lock-and-key" module inserted, which allows selective retrieval, erasure, or rewriting of the targeted cell "block" from a pool of cells ("disk"). Additionally, a codec algorithm with lossless compression ability is developed to improve the information density of each cell "block". As a proof of concept, target-specific reading and rewriting of the compressed data from a mimic cell "disk" comprising up to 105 "blocks" are demonstrated and achieve high specificity and reliability. The "Cell Disk" system described here concurrently supports random reading and rewriting, and it should have great scalability for practical data storage use.


Assuntos
Leitura , Saccharomyces cerevisiae , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , DNA/genética , Armazenamento e Recuperação da Informação
12.
Nat Plants ; 10(2): 228-239, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278952

RESUMO

Rapid advances in DNA synthesis techniques have enabled the assembly and engineering of viral and microbial genomes, presenting new opportunities for synthetic genomics in multicellular eukaryotic organisms. These organisms, characterized by larger genomes, abundant transposons and extensive epigenetic regulation, pose unique challenges. Here we report the in vivo assembly of chromosomal fragments in the moss Physcomitrium patens, producing phenotypically virtually wild-type lines in which one-third of the coding region of a chromosomal arm is replaced by redesigned, chemically synthesized fragments. By eliminating 55.8% of a 155 kb endogenous chromosomal region, we substantially simplified the genome without discernible phenotypic effects, implying that many transposable elements may minimally impact growth. We also introduced other sequence modifications, such as PCRTag incorporation, gene locus swapping and stop codon substitution. Despite these substantial changes, the complex epigenetic landscape was normally established, albeit with some three-dimensional conformation alterations. The synthesis of a partial multicellular eukaryotic chromosome arm lays the foundation for the synthetic moss genome project (SynMoss) and paves the way for genome synthesis in multicellular organisms.


Assuntos
Bryopsida , Epigênese Genética , Cromossomos , Genômica/métodos , Bryopsida/genética , Elementos de DNA Transponíveis
13.
Nat Plants ; 10(2): 327-343, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278953

RESUMO

The model plant Physcomitrium patens has played a pivotal role in enhancing our comprehension of plant evolution and development. However, the current genome harbours numerous regions that remain unfinished and erroneous. To address these issues, we generated an assembly using Oxford Nanopore reads and Hi-C mapping. The assembly incorporates telomeric and centromeric regions, thereby establishing it as a near telomere-to-telomere genome except a region in chromosome 1 that is not fully assembled due to its highly repetitive nature. This near telomere-to-telomere genome resolves the chromosome number at 26 and provides a gap-free genome assembly as well as updated gene models to aid future studies using this model organism.


Assuntos
Centrômero , Telômero , Centrômero/genética , Telômero/genética , Genoma de Planta
14.
Nat Commun ; 15(1): 770, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278805

RESUMO

Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) is a promising tool to study genomic rearrangements. However, the potential of SCRaMbLE to study genomic rearrangements is currently hindered, because a strain containing all 16 synthetic chromosomes is not yet available. Here, we construct SparLox83R, a yeast strain containing 83 loxPsym sites distributed across all 16 chromosomes. SCRaMbLE of SparLox83R produces versatile genome-wide genomic rearrangements, including inter-chromosomal events. Moreover, when combined with synthetic chromosomes, SCRaMbLE of hetero-diploids with SparLox83R leads to increased diversity of genomic rearrangements and relatively faster evolution of traits compared to hetero-diploids only with wild-type chromosomes. Analysis of the SCRaMbLEd strain with increased tolerance to nocodazole demonstrates that genomic rearrangements can perturb the transcriptome and 3D genome structure and consequently impact phenotypes. In summary, a genome with sparsely distributed loxPsym sites can serve as a powerful tool for studying the consequence of genomic rearrangements and accelerating strain engineering in Saccharomyces cerevisiae.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Rearranjo Gênico/genética , Cromossomos , Genômica
15.
ACS Sens ; 9(1): 244-250, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085648

RESUMO

CRISPR-mediated aptasensors have gained prevalence for detecting non-nucleic acid targets. However, there is an urgent need to develop an easily customizable design to improve the signal-to-noise ratio, enhance universality, and expand the detection range. In this article, we report a CRISPR-mediated programmable aptasensor (CPAS) platform. The platform includes single-stranded DNA comprising the aptamer sequence, locker DNA, and a crRNA recognition region, forming a hairpin structure through complementary hybridization. With T4 DNA polymerase, the crRNA recognition region was transformed into a complete double-stranded DNA through stem-loop extension, thereby activating the trans-cleavage activity of Cas 12a and generating fluorescence signals. The specific binding between the target molecule and aptamer disrupted the formation of the hairpin structure, altering the fluorescence signals. Notably, the CPAS platform allows for easy customization by simply changing the aptamer sequence and locker DNA, without entailing adjustments to the crRNA. The optimal number of bases in the locker DNA was determined to be seven nucleotides for the SARS-CoV-2 spike (S) protein and four nucleotides for ATP. The CPAS platform exhibited high sensitivity for S protein and ATP detection. Integration with a lateral flow assay enabled sensitive detection within 1 h, revealing its excellent potential for portable analysis.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Oligonucleotídeos , DNA de Cadeia Simples , Nucleotídeos , Trifosfato de Adenosina
16.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944512

RESUMO

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilação da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Biologia Sintética , RNA de Transferência/genética , Cromossomos Artificiais de Levedura/genética
17.
Mol Cell ; 83(23): 4424-4437.e5, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37944526

RESUMO

Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.


Assuntos
Núcleo Celular , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cromossomos/genética , Genoma Fúngico , Biologia Sintética/métodos
18.
Nat Commun ; 14(1): 7886, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036514

RESUMO

The genome of an organism is inherited from its ancestor and continues to evolve over time, however, the extent to which the current version could be altered remains unknown. To probe the genome plasticity of Saccharomyces cerevisiae, here we replace the native left arm of chromosome XII (chrXIIL) with a linear artificial chromosome harboring small sets of reconstructed genes. We find that as few as 12 genes are sufficient for cell viability, whereas 25 genes are required to recover the partial fitness defects observed in the 12-gene strain. Next, we demonstrate that these genes can be reconstructed individually using synthetic regulatory sequences and recoded open-reading frames with a "one-amino-acid-one-codon" strategy to remain functional. Finally, a synthetic neochromsome with the reconstructed genes is assembled which could substitute chrXIIL for viability. Together, our work not only highlights the high plasticity of yeast genome, but also illustrates the possibility of making functional eukaryotic chromosomes from entirely artificial sequences.


Assuntos
Cromossomos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Códon , Fases de Leitura Aberta , Cromossomos Fúngicos/genética , Genes Fúngicos
19.
Cell Genom ; 3(11): 100364, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020968

RESUMO

Aneuploidy compromises genomic stability, often leading to embryo inviability, and is frequently associated with tumorigenesis and aging. Different aneuploid chromosome stoichiometries lead to distinct transcriptomic and phenotypic changes, making it helpful to study aneuploidy in tightly controlled genetic backgrounds. By deploying the engineered SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) system to the newly synthesized megabase Sc2.0 chromosome VII (synVII), we constructed a synthetic disomic yeast and screened hundreds of SCRaMbLEd derivatives with diverse chromosomal rearrangements. Phenotypic characterization and multi-omics analysis revealed that fitness defects associated with aneuploidy could be restored by (1) removing most of the chromosome content or (2) modifying specific regions in the duplicated chromosome. These findings indicate that both chromosome copy number and specific chromosomal regions contribute to the aneuploidy-related phenotypes, and the synthetic chromosome resource opens new paradigms in studying aneuploidy.

20.
Cell Genom ; 3(11): 100435, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020970

RESUMO

Chromosome-level design-build-test-learn cycles (chrDBTLs) allow systematic combinatorial reconfiguration of chromosomes with ease. Here, we established chrDBTL with a redesigned synthetic Saccharomyces cerevisiae chromosome XV, synXV. We designed and built synXV to harbor strategically inserted features, modified elements, and synonymously recoded genes throughout the chromosome. Based on the recoded chromosome, we developed a method to enable chrDBTL: CRISPR-Cas9-mediated mitotic recombination with endoreduplication (CRIMiRE). CRIMiRE allowed the creation of customized wild-type/synthetic combinations, accelerating genotype-phenotype mapping and synthetic chromosome redesign. We also leveraged synXV as a "build-to-learn" model organism for translation studies by ribosome profiling. We conducted a locus-to-locus comparison of ribosome occupancy between synXV and the wild-type chromosome, providing insight into the effects of codon changes and redesigned features on translation dynamics in vivo. Overall, we established synXV as a versatile reconfigurable system that advances chrDBTL for understanding biological mechanisms and engineering strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...