Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(24): 5074-5081, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38857312

RESUMO

The nickel/photoredox dual catalysis system is an efficient conversion platform for the difunctionalization of unsaturated hydrocarbons. Herein, we disclose the first dual nickel/photoredox-catalyzed intramolecular 1,2-arylsulfonylation of allenes, which can accurately construct a C(sp2)-C(sp2) bond and a C(sp3)-S bond. The reaction exhibits excellent chemoselectivity and regioselectivity, allowing modular conformations of a diverse series of 3-sulfonylmethylbenzofuran derivatives. Control experiments showed that the bipyridine ligand is crucial for the formation of a stable σ-alkyl nickel intermediate, providing the possibility for sulfonyl radical insertion. Meanwhile, the electrophilic sulfonyl radical facilitates further oxidative addition of the σ-alkyl nickel intermediate and inhibits addition with allenes. In addition, control experiments, cyclic voltammetry tests, Stern-Volmer experiments, and density functional theory calculations afford evidence for the Ni(0)/Ni(I)/Ni(II)/Ni(III) pathway in this 1,2-arylsulfonylation.

2.
Org Lett ; 26(15): 3014-3019, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38547326

RESUMO

The radical relay provides an effective paradigm for intermolecular assembly to achieve functionalization across remote chemical bonds. Herein, we report the first radical relay 1,3-carbocarbonylation of α-carbonyl alkyl bromides across two separate C═C bonds. The reaction is highly chemo- and regioselective, with two C(sp3)-C(sp3) bonds and one C═O bond formed in a single orchestrated operation. In addition, the synthesis method under mild conditions and using inexpensive copper as the catalyst allows facile access to structurally diverse 1,3-carbocarbonylation products. The plausible mechanism is investigated through a series of control experiments, including radical trapping, radical clock experiments, critical intermediate trapping, and 18O labeling experiment.

3.
BMC Genom Data ; 24(1): 79, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102541

RESUMO

Hypertension, commonly referred to as high blood pressure, is a chronic medical condition characterized by persistently elevated blood pressure levels. It is a prevalent global health issue, affecting a significant portion of the population worldwide. Hypertension is often asymptomatic, making it a silent but potentially dangerous condition if left untreated. Genetic instruments for 1,091 were from a recent comprehensive metabolome genome-wide association study (GWAS). Summary statistics of diastolic blood pressure (DBP) and systolic blood pressure (SBP) involving 757,601 sample size were analyzed. Two-sample Mendelian Randomization (MR) was conducted to assess causal effect of metabolites on DBP and SBP risk, and reverse MR analysis was performed to identify the DBP/SBP causal effect on blood metabolites. Twelve and twenty-two metabolites were identified to be associated with DBP and SBP, respectively. Sensitive analysis showed four metabolites had robustness association on BP. Reverse MR demonstrated DBP and SBP could decrease the tricosanoyl sphingomyelin (d18:1/23:0)* level and increase the 2-hydroxyhippurate (salicylurate) level in blood, respectively. Our findings reveal an association between blood metabolites and blood pressure (DBP and SBP), suggesting potential therapeutic targets for hypertension intervention.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Humanos , Pressão Sanguínea/genética , Determinação da Pressão Arterial , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Hipertensão/genética , Hipertensão/metabolismo , Fatores de Risco , Análise da Randomização Mendeliana , Metaboloma
4.
Front Cell Infect Microbiol ; 13: 1267721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156319

RESUMO

Background: In recent years, observational studies have provided evidence supporting a potential association between autism spectrum disorder (ASD) and gut microbiota. However, the causal effect of gut microbiota on ASD remains unknown. Methods: We identified the summary statistics of 206 gut microbiota from the MiBioGen study, and ASD data were obtained from the latest Psychiatric Genomics Consortium Genome-Wide Association Study (GWAS). We then performed Mendelian randomization (MR) to determine a causal relationship between the gut microbiota and ASD using the inverse variance weighted (IVW) method, simple mode, MR-Egger, weighted median, and weighted model. Furthermore, we used Cochran's Q test, MR-Egger intercept test, Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and leave-one-out analysis to identify heterogeneity and pleiotropy. Moreover, the Benjamin-Hochberg approach (FDR) was employed to assess the strength of the connection between exposure and outcome. We performed reverse MR analysis on the gut microbiota that were found to be causally associated with ASD in the forward MR analysis to examine the causal relationships. The enrichment analyses were used to analyze the biological function at last. Results: Based on the results of IVW results, genetically predicted family Prevotellaceae and genus Turicibacter had a possible positive association with ASD (IVW OR=1.14, 95% CI: 1.00-1.29, P=3.7×10-2), four gut microbiota with a potential protective effect on ASD: genus Dorea (OR=0.81, 95% CI: 0.69-0.96, P=1.4×10-2), genus Ruminiclostridium5 (OR=0.81, 95% CI: 0.69-0.96, P=1.5×10-2), genus Ruminococcus1 (OR=0.83, 95% CI: 0.70-0.98, P=2.8×10-2), and genus Sutterella (OR=0.82, 95% CI: 0.68-0.99, P=3.6×10-2). After FDR multiple-testing correction we further observed that there were two gut microbiota still have significant relationship with ASD: family Prevotellaceae (IVW OR=1.24; 95% CI: 1.09-1.40, P=9.2×10-4) was strongly positively correlated with ASD and genus RuminococcaceaeUCG005 (IVW OR=0.78, 95% CI: 0.67-0.89, P=6.9×10-4) was strongly negatively correlated with ASD. The sensitivity analysis excluded the influence of heterogeneity and horizontal pleiotropy. Conclusion: Our findings reveal a causal association between several gut microbiomes and ASD. These results deepen our comprehension of the role of gut microbiota in ASD's pathology, providing the foothold for novel ideas and theoretical frameworks to prevent and treat this patient population in the future.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Bacteroidetes
5.
J Vet Sci ; 17(1): 63-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27051341

RESUMO

Gap junctions mediate direct communication between cells; however, toxicological cascade triggered by nonessential metals can abrogate cellular signaling mediated by gap junctions. Although cadmium (Cd) is known to induce apoptosis in organs and tissues, the mechanisms that underlie gap junction activity in Cd-induced apoptosis in BRL 3A rat liver cells has yet to be established. In this study, we showed that Cd treatment decreased the cell index (a measure of cellular electrical impedance) in BRL 3A cells. Mechanistically, we found that Cd exposure decreased expression of connexin 43 (Cx43), increased expression of p-Cx43 and elevated intracellular free Ca(2+) concentration, corresponding to a decrease in gap junctional intercellular communication. Gap junction blockage pretreatment with 18ß-glycyrrhizic acid (GA) promoted Cd-induced apoptosis, involving changes in expression of Bax, Bcl-2, caspase-3 and the mitochondrial transmembrane electrical potential (Δψm). Additionally, GA was found to enhance ERK and p38 activation during Cd-induced activation of mitogen-activated protein kinases, but had no significant effect on JNK activation. Our results indicated the apoptosis-related proteins and the ERK and p38 signaling pathways may participate in gap junction blockage promoting Cd-induced apoptosis in BRL 3A cells.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Junções Comunicantes/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Conexina 43/genética , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/citologia , Ratos , Transdução de Sinais/efeitos dos fármacos
6.
Sci Rep ; 6: 20404, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26852917

RESUMO

Cadmium (Cd) is a common environmental pollutant that can damage many organs and the fetus. We previously reported that Cd induced apoptosis in primary rat osteoblasts (OBs). OB apoptosis induced by Cd will eventually lead to osteoporosis. In this study, a novel pharmacotherapeutic approach was investigated involving the regulation of autophagy to prevent Cd osteoporosis. The results showed that Cd treatment induced apoptosis in OBs, as demonstrated by the ratio of Bax/Bcl-2, activation of poly (ADP-ribose) polymerase (PARP) and nuclear condensation. In addition, cells treated with Cd were observed to undergo autophagic cell death by monitoring the induction of the beclin 1, autophagy gene 5 (Atg5) and the expression of microtubule-associated protein 1 light chain 3 (LC3). The results indicated that promotion of apoptotic cell death by Cd is accompanied by induction of autophagy in OBs. Interestingly, Cd-mediated apoptotic cell death was suppressed by pretreatment with the autophagy activator rapamycin (RAP) and potentiated by the autophagy inhibitor chloroquine (CQ) or small interfering RNA against beclin 1. These findings suggest that the autophagic response plays a protective role that impedes eventual cell death. Activation of autophagy could therefore be an adjunctive strategy for treatment of Cd-induced osteoporosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cádmio/farmacologia , Osteoblastos/patologia , Animais , Proteína Beclina-1/antagonistas & inibidores , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Western Blotting , Células Cultivadas , Citometria de Fluxo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
7.
Cell Adh Migr ; 10(3): 299-309, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26743491

RESUMO

Osteoprotegerin has previously been shown to modulate bone mass by blocking osteoclast maturation and function. The detailed mechanisms of osteoprotegerin-induced disassembly of podosomes, disruption of adhesive structures and modulation of adhesion-related proteins in osteoclasts, however, are not well characterized. In this study, tartrate-resistant acidic phosphatase staining demonstrated that osteoprotegerin inhibited differentiation of osteoclasts. The use of scanning electron microscopy, real-time cell monitoring and confocal microscopy indicated that osteoclasts responded in a time and dose-dependent manner to osteoprotegerin treatments with retraction of peripheral adhesive structures and detachment from the extracellular substrate. Combined imaging and Western blot studies showed that osteoprotegerin induced dephosphorylation of Tyr 402 in Pyk2 and decreased its labeling in peripheral adhesion regions. osteoprotegerin induced increased intracellular labeling of Tyr 402 in Pyk2, Tyr 416 in Src, increased dephosphorylation of Tyr 527 in Src, and increased Pyk2/Src association in the central region of osteoclasts. This evidence suggests that Src may function as an adaptor protein that competes for Pyk2 and relocates it from the peripheral adhesive zone to the central region of osteoclasts in response to osteoprotegerin treatment. Osteoprotegerin may induce podosome reassembly and peripheral adhesive structure detachment by modulating phosphorylation of Pyk2 and Src and their intracellular distribution in osteoclasts.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Osteoprotegerina/farmacologia , Quinases da Família src/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Osteoclastos/citologia , Osteoclastos/ultraestrutura , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Podossomos/efeitos dos fármacos , Podossomos/metabolismo , Células RAW 264.7
8.
Cytotechnology ; 68(4): 1325-35, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26044733

RESUMO

This study aimed to investigate the effects of osteoprotegerin (OPG), a decoy receptor for receptor activator for nuclear factor κB ligand (RANKL), during the various stages of osteoclast differentiation, and additionally investigate its effects on osteoclast adhesion and activity. RAW264.7 murine monocytic cells were incubated with macrophage colony-stimulating factor and RANKL for 1, 3, 5, or 7 days, followed by an additional 24-h incubation in the presence or absence of OPG (80 ng/mL). We examined osteoclast differentiation and adhesion capacity using the tartrate-resistant acid phosphatase (TRAP) assay and immunofluorescence microscopy, and additionally examined cell growth in real time using the xCELLigence system. Furthermore, the expression levels of TRAP, RANK, integrin ß3, matrix metalloproteinase 9, cathepsin K, carbonic anhydrase II, and vesicular-type H(+)-ATPase A1 were examined using western blotting. OPG exposure on day 1 enhanced the osteoclast growth curve as well as adhesion, and increased RANK and integrin ß3 expression. In contrast, exposure to OPG at later time points (days 3-7) inhibited osteoclast differentiation, adhesion structure formation, and protease expression. In conclusion, the biological effects of OPG exposure at the various stages of osteoclast differentiation were varied, and included the enhanced adhesion and survival of preosteoclasts, the block of differentiation from the early to the terminal stages of osteoclastogenesis, and suppression of mature osteoclast activation following OPG exposure during the terminal differentiation stage, suggesting that the effects of OPG exposure differ based on the stage of differentiation.

9.
J Vet Sci ; 16(3): 297-306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425111

RESUMO

Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Osteoblastos/efeitos dos fármacos , Animais , Caspases/metabolismo , Osteoblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Cytokine ; 71(2): 199-206, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461399

RESUMO

Osteoclasts are critical for bone resorption and use podosomes to attach to bone matrix. Osteoprotegerin (OPG) is a negative regulator of osteoclast function that can affect the formation and function of podosomes. However, the signaling pathways that link OPG to podosome function have not been well characterized. Therefore, this study examined the roles of intracellular calcium and MAPKs in OPG-induced podosome disassembly in osteoclasts. We assessed the effects of the intracellular calcium chelator Bapta-AM, ERK inhibitor U0126, and p38 inhibitor SB202190 on OPG-treated osteoclast differentiation, adhesion structures, intracellular free Ca(2+) concentration and the phosphorylation state of podosome associated proteins (Pyk2 and Src). Mouse monocytic RAW 264.7 cells were differentiated to osteoclasts using RANKL (30ng/mL) and M-CSF (25ng/mL). The cells were pretreated with Bapta-AM (5µM), U0126 (5µM), or SB202190 (10µM) for 30min, followed by 40ng/mL OPG for 3h. Osteoclastogenesis, adhesion structure, viability and morphology, intracellular free Ca(2+) concentration and the phosphorylation state of Pyk2 and Src were measured by TRAP staining, scanning electron microscopy, real-time cell analyzer, flow cytometry and western blotting, respectively. OPG significantly inhibited osteoclastogenesis, the formation of adhesion structures, and reduced the amount of phosphorylated Pyk2 and Src-pY527, but increased phosphorylation of Src-pY416. Bapta-AM, U0126, and SB202190 partially restored osteoclast differentiation and adhesion structures. Both Bapta-AM and U0126, but not SB202190, restored the levels of intracellular free Ca(2+) concentration, phosphorylated Pyk2 and Src-pY527. All three inhibitors blocked OPG-induced phosphorylation at Src-pY416. These results suggest OPG disrupts the attachment structures of osteoclasts and activates Src as an adaptor protein that competes for the reduced amount of phosphorylated Pyk2 through calcium- and ERK-dependent signaling pathways. p38 MAPK signaling may have a different role in OPG-induced osteoclast retraction. Our findings potentially offer novel insights into the signaling mechanisms downstream of OPG that affect osteoclast attachment to the extracellular matrix.


Assuntos
Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoprotegerina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Butadienos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Estruturas da Membrana Celular/metabolismo , Estruturas da Membrana Celular/ultraestrutura , Células Cultivadas , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Quinase 2 de Adesão Focal/metabolismo , Imidazóis/farmacologia , Camundongos , Microscopia Eletrônica de Varredura , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Nitrilas/farmacologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA