Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566267

RESUMO

Developing and cultivating rice varieties is a potent strategy for reclaiming salinity-affected soils for rice production. Nevertheless, the molecular mechanisms conferring salt tolerance, especially in conventional high-yield japonica rice varieties, remain obscure. In this study, Zhendao 23309 (ZD23309) exhibited significantly less grain yield reduction under a salt stress gradient than the control variety Wuyunjing 30 (WYJ30). High positive correlations between grain yield and dry matter accumulation at the jointing, heading and maturity stages indicated that early salt tolerance performance is a crucial hallmark for yield formation. After a mild salt stress (85 mM NaCl) of young seedlings, RNA sequencing (RNA-seq) of shoot and root separately identified a total of 1952 and 3647 differentially expressed genes (DEGs) in ZD23309, and 2114 and 2711 DEGs in WYJ30, respectively. Gene ontology (GO) analysis revealed numerous DEGs in ZD23309 that play pivotal roles in strengthening salt tolerance, encompassing the response to stimulus (GO:0050896) in shoots and nucleoside binding (GO:0001882) in roots. Additionally, distinct expression patterns were observed in a fraction of genes in the two rice varieties under salt stress, corroborating the efficacy of previously reported salt tolerance genes. Our research not only offers fresh insights into the differences in salt stress tolerance among conventional high-yield rice varieties but also unveils the intricate nature of salt tolerance mechanisms. These findings lay a solid groundwork for deciphering the mechanisms underlying salt tolerance.


Assuntos
Oryza , Oryza/fisiologia , Perfilação da Expressão Gênica , Estresse Salino , Plântula/fisiologia , Tolerância ao Sal/genética
2.
Food Res Int ; 169: 112886, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254334

RESUMO

The difference in grain yield between superior grains (SG) on the upper part and inferior grains (IG) on the lower part of the same panicle was widely reported. To date, variations in rice taste quality between SG and IG and the related starch physicochemical properties remained poorly understood. Here, rice cultivars with different taste quality (NT, normal taste; GT, good taste) were grown to investigate the mechanism underlying taste difference between SG and IG and the correlation between cooked rice taste and starch properties. In this study, the taste value of GT rice was 32.2% higher than that of NT rice across the cultivars. The GT rice comprised a series of typical taste qualities of larger stickiness, smaller hardness, lower apparent amylose content (AAC), and lower protein content (PC). The taste quality differed among rice grains on the same panicle; SG achieved 21.9% and 17.0% higher taste value than IG in GT rice and NT rice, respectively. The higher taste value in SG was owing to the larger stickiness and lower PC. Meanwhile, SG of GT rice achieved the lowest PC (8.2%) and gluten content (5.6%), which might indicate a better health value. Additionally, larger and smoother granules, more fa (DP < 12), lower crystallinity, and larger 1045/1022 cm-1 ratios were found in SG starch compared to IG starch. These led to a weaker swelling power and lower gelatinization enthalpy in SG starch, while gelatinization temperature and retrogression enthalpy were the opposite. Moreover, SG starch exhibited higher storage modulus, loss modulus, slowly digestible starch contents, and resistant starch contents than IG. Our results revealed a great difference in taste quality between SG and IG in rice. The larger and smoother starch granules and shorter chain length could increase the ordered structure of starch, thus improving swelling power, gelatinization properties, and rheological characteristics and facilitating better taste quality of SG over IG. Besides, the lower PC (especially gluten content), higher slowly digestible starch, and higher resistant starch content indicated a more promising health value of SG in the food industry.


Assuntos
Oryza , Amido , Amido/química , Oryza/química , Paladar , Amido Resistente/metabolismo , Glutens/metabolismo
3.
Front Plant Sci ; 14: 1107880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035066

RESUMO

Changing from conventional to organic farming might have fewer negative environmental impacts because of the avoidance of synthetic fertilizer and chemical pesticides. In this study, the economic viability and environmental and sustainability performance of the four dominant organic (rice-green manure rotation (RG), rice-duck co-culture (RD), rice-crayfish co-culture (RCF) and rice monoculture (RM)) and one conventional (rice monoculture (CRM)) rice production modes were evaluated in Jiangsu Province, China. Compared with the CRM mode, organic rice production increased economic benefits density and improved the economic benefit of crop land and irrigation water use. With the lowest total emergy input and the highest rice yield, the CRM mode showed the highest ecological efficiency in converting resources to total available energy content and nutrition density unit among the five rice production modes. However, the RCM mode showed higher environmental pressure and lower sustainability than the four organic modes due to the larger proportion of nonrenewable emergy input. The RM mode was the most uneconomic organic rice production mode with the highest cost input and the lowest product output but had relatively higher sustainability due to the higher proportion of renewable resources to total emergy inputs. Compared with the RM mode, the value-to-cost ratio, economic benefit density and benefit-cost ratio were increased in the RG, RD and RCF modes. Although the RD and RCF modes had higher efficiency in converting resources to total nutrition density units and monetary value, they imposed higher environmental pressure with a lower renewable fraction and emergy sustainability index than those in the RM mode. The RG mode had higher emergy utilization efficiency and the highest renewable fraction and emergy sustainability index among the four organic rice production modes. Considering the ecological and economic effects, the RG mode was conducive to improving the economic viability and sustainability of organic rice production.

4.
J Sci Food Agric ; 103(12): 5747-5753, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37079446

RESUMO

BACKGROUND: Biochar can play a key role in improving paddy soil and productivity. However, there is limited information on the effects of biochar on rice quality and starch gelatinization. In this study, four rice straw biochar dosage treatments (0, 20, 40 and 60 g kg-1 ; CK, C20, C40 and C60, respectively) were set up to investigate rice yield components, rice processing, appearance and cooking quality, and starch gelatinization. RESULTS: Addition of biochar increased the effective panicle, grain number per panicle and seed setting rate. However, it decreased the 1000-grain weight, resulting in an increase in yield. In 2019, all the biochar treatments improved the head rice rate (9.13-11.42%), whereas in 2020 only the C20 treatment improved. Low biochar dosage had little effect on grain appearance. High biochar dosage significantly decreased the chalky rice rate by 21.47% and chalkiness by 19.44% in 2019. However, it significantly increased the chalky rice rate and chalkiness by 118.95% and 85.45% in 2020, respectively. Biochar significantly lowered the amylose content except for the C20 and C40 treatments in 2020, and the gel consistency. The C40 and C60 treatments significantly increased the peak and breakdown viscosities and decreased the setback viscosity compared with CK. Correlation analysis showed that starch gelatinization characteristics were significantly correlated with the head rice rate, chalky rate and amylose content. CONCLUSION: A lower biochar dosage can improve the yield and milled rice rate and maintain a higher quality of appearance, whereas a higher biochar dosage can significantly improve starch gelatinization. © 2023 Society of Chemical Industry.


Assuntos
Oryza , Amido , Amido/química , Amilose/análise , Oryza/química , Viscosidade , Grão Comestível/química
5.
Sci Total Environ ; 879: 163102, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966835

RESUMO

Wheat-rice cropping system in China, characterized by smallholder with conventional practice, is energy- and carbon-intensive. Cooperative with scientific practice is a promising practice to increase resource use while reducing environmental impact. However, comprehensive studies of the energy and carbon (C) budgeting of management practices on the actual field-scale production under different production types are lacking. The present research examined the energy and C budgeting of smallholder and cooperative using conventional practice (CP) or scientific practice (SP) at the field scale level in the Yangtze River Plain, China. The SPs and cooperatives exhibited 9.14 % and 6.85 % and 4.68 % and 2.49 % higher grain yields over the corresponding CPs and smallholders, respectively, while maintaining 48.44 % and 28.50 % and 38.81 % and 20.16 % higher net income. Compared to the CPs, the corresponding SPs reduced the total energy input by 10.35 % and 7.88 %, and the energy savings were primarily attributable to reductions in fertilizer, water, and seeds through the use of improved techniques. The total energy input in the cooperatives was 11.53 % and 9.09 % lower than that for the corresponding smallholders due to the mechanistic enhancements and improved operational efficiency. As a result of the increased yields and reduced energy inputs, the SPs and cooperatives ultimately increased energy use efficiency. The high productivity attributed to increased C output in the SPs, which increased C use efficiency and the C sustainability index (CSI) but decreased the C footprint (CF) over the corresponding CPs. The higher productivity and more efficient machinery of cooperatives increased the CSI and reduced the CF compared to the corresponding smallholders. Overall, the SPs coupled with cooperatives were the most energy efficient, C efficient, profitable and productive for wheat-rice cropping systems. In the future, improved fertilization management practices and integration of smallholder farms were effective means for developing sustainable agriculture and promoting environmental safety.

6.
J Sci Food Agric ; 103(6): 2794-2805, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36369962

RESUMO

BACKGROUND: There is an increasing understanding of the importance of biochar-based fertilizers in agroecosystems. However, no research has evaluated the effects of partial substitution of urea with biochar-based urea on rice yields and soil microbial communities. We therefore investigated the rice yields, bacterial communities, and gene abundance involved in nitrogen in silty clay and sandy loam soil paddy fields treated with urea (U), total substitution of urea with biochar-based urea (BSU), partial substitution of urea with biochar-based urea in basal and tillering fertilizers (BSU1), and partial substitution of urea with biochar-based urea in panicle fertilizers (BSU2). RESULTS: Compared with U, applying biochar-based urea increased rice yields, with BSU2 having the most notable effect. Principal coordinate analysis revealed that bacterial communities treated with BSU2 in both soils were significantly different from those treated with U and BSU, most probably due to the decrease in pH caused by the decrease in the concentration of ammonium. The relative abundance of Subdivision3_genera_incertae_sedis, Azotobacter, Geobacter, Buchnera, and Terrimonas in silty clay soils and Saccharibacteria_genera_incertae_sedis and Geobacter in sandy loam soils significantly increased when treated with BSU2 and was positively correlated with rice yields, indicating that the improvements in rice yield were associated with changes in bacterial communities. Based upon amoA/narG related to nitrate accumulation and norB/nosZ related to nitrous oxide emissions, BSU2 enabled a lower risk of nitrate leaching and nitrous oxide emissions in both soils, in comparison with the U and BSU treatments. CONCLUSION: The BSU2 treatment had a stronger yield-increasing effect than biochar-based urea alone and lowered the risk of nitrogen pollution, which is beneficial to the sustainable development of paddy fields. © 2022 Society of Chemical Industry.


Assuntos
Oryza , Nitratos/análise , Ureia , Argila , Óxido Nitroso/análise , Fertilizantes/análise , Carvão Vegetal , Solo , Bactérias , Nitrogênio/análise , Agricultura
7.
Environ Sci Pollut Res Int ; 30(13): 38761-38774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36586025

RESUMO

The rhizosphere microbiome plays a vital role in crop growth and adaptation. However, the effects of rice genotype, nitrogen (N) fertilization, and their interactions on the rhizosphere bacterial communities in low fertility soil remain poorly understood. In this study, a two-factor field experiment was performed in newly reclaimed mudflat paddies characterized by poor fertility to analyze bacterial communities in the rhizosphere of Yongyou 2640 (japonica/indica hybrid rice, JIH) and Huaidao No.5 (japonica conventional rice, JC) under different N fertilizer rates. Results showed that genotype, followed by N fertilizer rate, was the primary factor affecting rhizobacteria diversity. Rhizobacteria diversity was higher in JIH than in JC and that of JIH and JC did not significantly change overall as N fertilizer rates but increased and decreased at N fertilizer rates of over 300 kg N ha-1, respectively. The inconsistent response was probably attributed to the difference in the increase of ammonium and/or nitrate in the rhizosphere of JIH and JC. Genotype explained approximately 26% of the variation in rhizosphere bacterial communities. Rhizosphere bacterial communities with N fertilizer rates of over 300 kg N ha-1 were more dissimilar to those without N fertilization relative to those with N fertilizer rates of below 300 kg N ha-1, which was mainly attributed to changes in the concentration of ammonium and/or nitrate. The relative abundances of some potential beneficial genera such as Salinimicrobium, Salegentibacter, Gillisia, and Anaerolinea in the rhizosphere of JC and Salegentibacter, Lysobacter, Nocardioides, and Pontibacter in the rhizosphere of JIH were increased under N fertilizer rates of less than 300 kg N ha-1 and positively correlated with rice yields, which indicate that changes in bacterial communities caused by N fertilization might be strongly associated with the improvement of rice yield. Overall, rhizosphere bacterial communities were more sensitive to genotype in newly reclaimed mudflat paddies and showed a consistent response to N fertilizer rates.


Assuntos
Fertilizantes , Oryza , Fertilizantes/análise , Nitratos , Nitrogênio/análise , Rizosfera , Solo , Bactérias/genética , Microbiologia do Solo
8.
J Fungi (Basel) ; 8(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36547644

RESUMO

Rice false smut (RFS), caused by Ustilaginoidea virens, is an important fungal disease of rice. In China, Methyl Benzimidazole Carbamates (MBCs), including carbendazim, are common fungicides used to control RFS and other rice diseases. In this study, resistance of U. virens to carbendazim was monitored for three consecutive years during 2018 to 2020. A total of 321 U. virens isolates collected from Jiangsu Province of China were tested for their sensitivity to carbendazim on PSA. The concentration at which mycelial growth is inhibited by 50% (EC50) of the carbendazim-sensitive isolates was 0.11 to 1.38 µg/mL, with a mean EC50 value of 0.66 µg/mL. High level of resistance to carbendazim was detected in 14 out of 321 isolates. The resistance was stable but associated with a fitness penalty. There was a statistically significant and moderate negative correlation (r= −0.74, p < 0.001) in sensitivity between carbendazim and diethofencarb. Analysis of the U. virens genome revealed two potential MBC targets, Uvß1Tub and Uvß2Tub, that putatively encode ß-tubulin gene. The two ß-tubulin genes in U. virens share 78% amino acid sequence identity, but their function in MBC sensitivity has been unclear. Both genes were identified and sequenced from U. virens sensitive and resistant isolates. It is known that mutations in the ß2-tubulin gene have been shown to confer resistance to carbendazim in other fungi. However, no mutation was found in the Uvß2Tub gene in either resistant or sensitive isolates. Variations including point mutations, non-sense mutations, codon mutations, and frameshift mutations were found in the Uvß1Tub gene from the 14 carbendazim-resistant isolates, which have not been reported in other fungi before. Thus, these results indicated that variations of Uvß1Tub result in the resistance to carbendazim in field isolates of Ustilaginoidea virens.

9.
Front Plant Sci ; 13: 1056975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479513

RESUMO

Introduction: It is of great significance to determine the composition of the soil weed seed bank under different organic rice production modes to provide decision making support for rational integrated weed management in organic rice production. Methods: The soil weed seed bank of the four dominant organic production modes, namely, rice-green manure rotation (RG), rice monoculture (RM), rice-crayfish coculture (RC) and rice-duck coculture (RD), with different numbers of consecutive planting years (3 to 10 years) in different sites in Jiangsu Province were investigated to determine the influence of organic rice production mode on weed composition. Results and Discussion: There were significant differences in the weed composition in the soil seed bank among the four organic rice production modes. The most dominant weed group was broadleaf weeds in the soil seed bank under the RG and RM modes; however, under the RM mode, the most dominant weed species were sedge and grass weeds. Sedge and grass weeds dominated the soil seed bank of the RC and RD modes, respectively. Therefore, specific weed management strategies could be formulated based on the differences in weed composition under different organic rice production modes. The application of organic fertilizer and irrigation were identified as primary factors associated with the differences in weed composition in the soil seed banks, which had higher effects on the weed composition than hand weeding. Consequently, fertilization and irrigation strategies that alter weed composition could be used as improved weed management program components in organic rice production systems. Long-term organic rice planting is beneficial for increasing weed diversity in paddy fields. Our results indicated that weed species diversity increased and weed community evenness and dominance decreased with the increase in the number of consecutive planting years under all four organic rice production modes.

10.
J Fungi (Basel) ; 8(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422052

RESUMO

Rice false smut (RFS) caused by Ustilaginoidea virens has been one of the most severe rice diseases. Fungicide-based chemical control is a significant measure to control RFS. In the sensitivity determination of quinone outside inhibitor (QoI) fungicide in vitro, salicylhydroxamic acid (SHAM) has been commonly added to artificial culture media in order to inhibit alternative oxidase of phytopathogenic fungi. However, some studies showed that artificial media should not include SHAM due to its toxicity. Whether SHAM should be added in the assay of U. virens sensitivity to QoI fungicide remains unknown. In this study, two appropriate media, potato sucrose agar (PSA) and minimal medium (MM), were selected to test SHAM toxicity and sensitivity of U. virens to azoxystrobin and pyraclostrobin. The mycelial growth and sensitivity to azoxystrobin and pyraclostrobin had no significant difference between on PSA and MM. SHAM could significantly inhibit mycelial growth, conidial germination, peroxidase (POD) and esterase activity of U. virens. Average effective concentration for inhibiting 50% (EC50) values of SHAM against mycelial growth of ten U. virens were 27.41 and 12.75 µg/mL on PSA and MM, respectively. The EC50 values of SHAM against conidial germination of isolates HWD and JS60 were 70.36 and 44.69 µg/mL, respectively. SHAM at 30 µg/mL significantly inhibited POD and esterase activity of isolates HWD and JS60, and even SHAM at 10 µg/mL significantly inhibited POD activity of isolate HWD. In addition, SHAM significantly reduced EC50 values and EC90 values of azoxystrobin and pyraclostrobin on both PSA and MM. Even in the presence of SHAM at 10 µg/mL, average EC50 values of ten U. virens isolates for azoxystrobin decreased 1.7-fold on PSA and 4.8-fold on MM, and for pyraclostrobin that decreased 2.8-fold on PSA and 4.8-fold on MM. Therefore, these results suggest that SHAM should not be included in artificial media in the assay of U. virens sensitivity to QoI fungicides.

11.
Front Plant Sci ; 13: 990105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340391

RESUMO

An accurate and objective evaluation of the carbon footprint of rice production is crucial for mitigating greenhouse gas (GHG) emissions from global food production. Sensitivity and uncertainty analysis of the carbon footprint evaluation model can help improve the efficiency and credibility of the evaluation. In this study, we combined a farm-scaled model consisting of widely used carbon footprint evaluation methods with a typical East Asian rice production system comprising two fertilization strategies. Furthermore, we used Morris and Sobol' global sensitivity analysis methods to evaluate the sensitivity and uncertainty of the carbon footprint model. Results showed that the carbon footprint evaluation model exhibits a certain nonlinearity, and it is the most sensitive to model parameters related to CH4 emission estimation, including EFc (baseline emission factor for continuously flooded fields without organic amendments), SFw (scaling factor to account for the differences in water regime during the cultivation period), and t (cultivation period of rice), but is not sensitive to activity data and its emission factors. The main sensitivity parameters of the model obtained using the two global sensitivity methods were essentially identical. Uncertainty analysis showed that the carbon footprint of organic rice production was 1271.7 ± 388.5 kg CO2eq t-1 year-1 (95% confidence interval was 663.9-2175.8 kg CO2eq t-1 year-1), which was significantly higher than that of conventional rice production (926.0 ± 213.6 kg CO2eq t-1 year-1, 95% confidence interval 582.5-1429.7 kg CO2eq t-1 year-1) (p<0.0001). The carbon footprint for organic rice had a wider range and greater uncertainty, mainly due to the greater impact of CH4 emissions (79.8% for organic rice versus 53.8% for conventional rice). EFc , t, Y, and SFw contributed the most to the uncertainty of carbon footprint of the two rice production modes, wherein their correlation coefficients were between 0.34 and 0.55 (p<0.01). The analytical framework presented in this study provides insights into future on-farm advice related to GHG mitigation of rice production.

12.
J Fungi (Basel) ; 8(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36294573

RESUMO

Rice blast caused by Magnaporthe oryzae is one of the most destructive fungal diseases of rice worldwide. Stimulatory effects of low doses of fungicides on pathogens are closely relevant to disease management. In the present study, in potato dextrose agar (PDA) amended with carbendazim at a dose range from 0.003 to 0.3 µg/mL, stimulatory effects on the mycelial growth of three isolates sensitive to carbendazim were tested. Carbendazim at concentrations from 0.003 to 0.1 µg/mL showed stimulatory effects on mycelial growth of isolates Guy11 and H08-1a, while carbendazim at concentrations from 0.003 to 0.03 µg/mL stimulated the growth of isolate P131. The maximum stimulation magnitudes were 11.84% for the three isolates tested. Mycelial colonies grown on PDA amended with different concentrations of carbendazim were incubated at 28 °C in darkness for 7 days as the pretreatment. Pretreatment mycelia were inoculated on fresh fungicide-free PDA and subsequent mycelia growth stimulations were still observed, and the maximum stimulation magnitudes were 9.15% for the three isolates tested. Pretreatment mycelia did not significantly change the tolerance to H2O2 and NaCl, except that the tolerance to H2O2 was increased significantly (p < 0.05) when the carbendazim was at 0.3 µg/mL. After five generations of mycelial transference on fungicide-free PDA, the transgenerational hormesis of mycelial were exhibited when transferred onto PDA supplemented with carbendazim at 0.3 µg/mL, and the maximum percent stimulation was 51.28%. The time course of infection indicated that the visible initial necrotic symptoms could be detected at 2 DPI on leaves treated with carbendazim at 0.03 µg/mL, whereas no necrotic symptom could be discerned for the control. Statistical results of lesion area and lesion type at 7 DPI showed that there was a significant stimulation (p < 0.05) on aggressiveness of M. oryzae isolate Guy11 on detached rice leaves at 0.03 µg/mL carbendazim. These results will advance our understanding of hormetic effects of fungicides and provide valuable information for judicious application of fungicides.

13.
Bioengineering (Basel) ; 9(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134956

RESUMO

The high-affinity potassium transporter (HKT) genes are key ions transporters, regulating the plant response to salt stress via sodium (Na+) and potassium (K+) homeostasis. The main goal of this research was to find and understand the HKT genes in rice and their potential biological activities in response to brassinosteroids (BRs), jasmonic acid (JA), seawater, and NaCl stress. The in silico analyses of seven OsHKT genes involved their evolutionary tree, gene structures, conserved motifs, and chemical properties, highlighting the key aspects of OsHKT genes. The Gene Ontology (GO) analysis of HKT genes revealed their roles in growth and stress responses. Promoter analysis showed that the majority of the HKT genes participate in abiotic stress responses. Tissue-specific expression analysis showed higher transcriptional activity of OsHKT genes in roots and leaves. Under NaCl, BR, and JA application, OsHKT1 was expressed differentially in roots and shoots. Similarly, the induced expression pattern of OsHKT1 was recorded in the seawater resistant (SWR) cultivar. Additionally, the Na+ to K+ ratio under different concentrations of NaCl stress has been evaluated. Our data highlighted the important role of the OsHKT gene family in regulating the JA and BR mediated rice salinity tolerance and could be useful for rice future breeding programs.

14.
Front Plant Sci ; 13: 982637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968148

RESUMO

Numerous papers studied the relations between nitrogen rate and rice yield in saline soils, whereas the rice root morphological and physiological characteristics mediating nitrogen rates in yield formation under varied salinity levels remain less concerns. Through a field experiment applied with five nitrogen rates (0, 210, 255, 300, 345, and 390 kg ha-1) in saline land, we found that rice yield peaked at 7.7 t ha-1 under 300 kg ha-1 nitrogen, and excessive N was not conductive for increasing yield. To further elucidate its internal physiological mechanism, a pot experiment was designed with three N rates (210 [N1], 300 [N2], 390 [N3] kg ha-1) and three salt concentrations (0 [S0], 1.5 [S1], 3.0 [S2] g kg-1 NaCl). Results showed that the average grain yield was decreased by 19.1 and 51.1% under S1 and S2, respectively, while notably increased by 18.5 and 14.5% under N2 and N3, respectively. Salinity stress significantly inhibited root biomass, root length and surface area, root oxidation capacity (ROC), K+ and K+/Na+ ratio, and nitrogen metabolism-related enzyme activities, whereas root Na+ and antioxidant enzyme activities were notably increased. The mechanism of how insufficient N supply (N1) affected rice yield formation was consistent at different salinity levels, which displayed adverse impacts on root morphological and physiological traits, thereby significantly inhibiting leaf photosynthesis and grain yield of rice. However, the mechanism thorough which excessive N (N3) affected yield formation was quite different under varied salinity levels. Under lower salinity (S0 and S1), no significant differences on root morphological traits and grain yield were observed except the significantly decline in activities of NR and GS between N3 and N2 treatments. Under higher salinity level (S2), the decreased ROC, K+/Na+ ratio due to increased Na+, antioxidant enzyme activities, and NR and GS activities were the main reason leading to undesirable root morphological traits and leaf photosynthesis, which further triggered decreased grain yield under N3 treatment, compared to that under N2 treatment. Overall, our results suggest that improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate.

15.
Foods ; 11(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36010489

RESUMO

Nitrogen fertilizer is essential for rice growth and development, and topdressing nitrogen fertilizer at panicle stage has a huge impact on rice grain quality. However, the effect of panicle nitrogen fertilizer (PNF) on starch physicochemical properties and fine structure remain unclear. In this study, four PNF levels (0, 60, 120, 180 kg N ha-1) were grown with the same basal and tiller fertilizer (150 kg N ha-1). The starch physicochemical properties, fine structure, texture properties and eating quality of two japonica rice were determined. We found that the content of total protein, crude fat and amylose between superior and inferior grains were significantly different. Compared with inferior grains, superior grains had low relative crystallinity, good pasting characteristics and outstanding eating quality. With the increase of nitrogen application rates, the starch volume mean diameter was lower; the average chain length of amylopectin was longer; and the relative crystallinity of starch was higher. The changes above in starch structure resulted in an increase in starch solubility, swelling power and gelatinization enthalpy, and led to a decrease in retrogradation enthalpy, retrogradation percentage and pasting viscosity, consequently contributing to the increase in hardness and stickiness of rice and the deterioration of taste value. These results indicated that topdressing PNF lengthened the amylopectin chain, decreased starch granule size, enhanced crystallization stability and increased gelatinization enthalpy, which were the direct reasons for the deterioration of cooking and eating quality.

16.
J Control Release ; 350: 748-760, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030990

RESUMO

In the past decades, polyurethane has emerged as a new material that has been widely developed and applied in coated controlled release fertilizers (CRFs). Particularly in recent years, the excessive consumption of petroleum resources and increasing demand for sustainable development have resulted in considerable interest in bio-based polyurethane coated controlled-release fertilizers. This review article focuses on the application and progress of environmentally friendly bio-based materials in the polyurethane-coated CRF industry. We also explore prospects for the green and sustainable development of coated CRFs. Using animal and plant oils, starch, lignin, and cellulose as raw materials, polyols can be produced by physical, chemical, and biological means to replace petroleum-based materials and polyurethane film coating for CRFs can be prepared. Various modifications can also improve the hydrophobicity and degradability of polyurethane film. A growing body of research on bio-based polyurethane has revealed its great potential in the production and application of coated CRFs. The purpose of this review is to highlight the practicality of bio-based materials in the application of polyurethane-coated CRFs and to clarify their current limitations.


Assuntos
Fertilizantes , Petróleo , Celulose , Preparações de Ação Retardada , Lignina , Óleos de Plantas , Poliuretanos , Amido
17.
Front Plant Sci ; 13: 918460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712589

RESUMO

Salt is one of the main factors limiting the use of mudflats. In this study, the yield, quality, and mineral content of rice seeds under salt stress were investigated. A pot experiment was conducted with Yangyugeng2, Xudao9, and Huageng5 under 0, 17.1, 25.6, and 34.2 mM NaCl of salt concentration treatments. The results showed that salt stress can significantly decrease panicle number, grain number per panicle, 1000-grain weight and yield of rice, and the panicle number was among other things the main cause of yield loss under saline conditions. When the salt concentration is less than 34.2 mM NaCl, the salt stress increases the brown rice rate and milled rice rate, thus significant increasing head milled rice rate of salt-sensitive varieties but decreasing in salt-tolerant varieties. In addition, the grain length is more sensitive than grain width to salt stress. This study also indicates that different varieties of rice exhibit different salt tolerance under salt stress, the three rice varieties in this study, in order of salt tolerance, are Xudao9, Huageng5, and Yangyugeng2. Salt stress will increase the appearance, viscosity, degree of balance, and taste value, and decrease the hardness of rice when salt concentration is less than 17.1 mM NaCl in Yangyugeng2 and Huageng5 or 25.6 mM NaCl in Xudao9. The differences in starch pasting properties among rice varieties in this study are larger than those caused by salt stress. The uptake capacity of K, Mg, P, S, and Cu ions in the seeds of different rice varieties significantly vary, and salt stress causes significant differences in the uptake capacity of K, Na, and Cu ions in rice seeds. Rice varieties with high salt tolerance can be selected for the development and utilization of mudflats, and low concentration of salt stress will increase the rice quality, all of which are meaningful to agricultural production.

18.
Plant Cell Physiol ; 63(7): 991-1007, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35579477

RESUMO

The grain filling of rice depends on photoassimilates from leaves and stems. Phloem loading is the first crucial step for the transportation of sucrose to grains. However, phloem loading mechanisms in rice leaves and stems and their response to nitrogen (N) remain unclear. Here, using a combination of electron microscopy, transportation of a phloem tracer and 13C labeling, phloem loading was studied in rice leaves and stems. The results showed that the sieve element-companion cell complex lacked a symplastic connection with surrounding parenchyma cells in leaves and stems. The genes expression and protein levels of sucrose transporter (SUTs) and sugars will eventually be exported transporters (SWEETs) were detected in the vascular bundle of leaves and stems. A decrease in the 13C isotope remobilization from leaves to stems and panicles following treatment with p-chloromercuribenzenesulfonic acid indicated that rice leaves and stems actively transport sucrose into the phloem. Under low-N (LN) treatment, the activities of α-amylase, ß-amylase and sucrose phosphate synthase (SPS) in stems and activity of SPS in leaves increased; genes expression and protein levels of SUTs and SWEETs in leaves and stems increased; the 13C isotope reallocation in panicles increased. These indicated that LN enhanced apoplastic phloem loading in stems and leaves. This improved the translocation of photoassimilates and consequently increased grain filling percentage, grain weight and harvest index. This study provides evidence that rice leaves and stems utilize an apoplastic loading strategy and respond to N stimuli by regulating the genes expression and protein levels of SUTs and SWEETs.


Assuntos
Oryza , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Oryza/metabolismo , Floema/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo
19.
Environ Sci Pollut Res Int ; 29(47): 71113-71123, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35595885

RESUMO

Conversion of coastal mudflats into paddy soils is an effective measure to alleviate the pressures on land resources. However, few studies have evaluated the effects of nitrogen (N) fertilizers on bacterial communities in newly reclaimed mudflat paddy soils. We performed a field plot experiment with six N fertilizer rates (0, 210, 255, 300, 345, and 390 kg N ha-1) in a newly reclaimed mudflat paddy for 2 consecutive years and used Illumina sequencing and qPCR to investigate the effects of N fertilizers on bacterial communities and N-cycling genes. Results showed that high N fertilization (above 300 kg N ha-1) increased the contents of organic matter (OM), total N (TN), ammonium (NH4+), and nitrate (NO3-) and significantly decreased the diversity and richness of bacteria. Furthermore, high N fertilization had a stronger effect on bacterial communities than low N fertilization, probably due to high concentrations of NH4+, OM, and NO3-. Additionally, in paddy soils with high N fertilizer application, the relative abundances of Bacteroidetes, γ-proteobacteria, and Actinobacteria increased significantly, but the reverse was true for those of Chloroflexi, Firmicutes, δ-proteobacteria, α-proteobacteria, Acidobacteria, and ß-proteobacteria. The results of qPCR indicated that high N fertilization significantly increased the relative abundance of nifH genes involved in N fixation and decreased that of amoA-archaea involved in ammonia oxidation, nirS genes involved in nitrite reduction, and nosZ genes involved in nitrous oxide reduction, which suggested that high N fertilization increased the potential of available N retention and reduced the potential of nitrous oxide emission. Overall, N fertilizers with an N fertilizer rate of above 300 kg N ha-1 significantly altered the bacterial communities and N-cycle of mudflat paddy soils.


Assuntos
Compostos de Amônio , Fertilizantes , Amônia/análise , Bactérias/genética , Fertilizantes/análise , Nitratos/análise , Nitritos/análise , Nitrogênio/análise , Óxido Nitroso/análise , Solo , Microbiologia do Solo
20.
Plant Dis ; 106(11): 2967-2973, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35306849

RESUMO

Rice false smut caused by the filamentous fungus Ustilaginoidea virens is a devastating grain disease in rice. Fungicides have been an important measure for the control of this disease. In this study, baseline sensitivities of 179 isolates of U. virens to the quinone outside inhibitor (QoI) fungicides azoxystrobin and pyraclostrobin were established. The distribution of the 50% effective concentration (EC50) values of each fungicide was unimodal. The frequency distribution of logarithmically transformed EC50 values fit or fit closer to a normal distribution. The ranges of EC50 values for azoxystrobin and pyraclostrobin were 0.001 to 0.864 and 0.001 to 0.569 µg/ml, with means and standard errors of the mean values of 0.203 ± 0.012 and 0.079 ± 0.006 µg/ml, respectively. There was a statistically significant and moderately positive correlation (n = 100, r = 0.469, P = 0.001) in sensitivity between these two fungicides. No cross-resistance was found between azoxystrobin, pyraclostrobin, and carbendazim or sterol demethylation inhibitor fungicides. Each fungicide had a significantly higher mean preventive efficacy compared with its curative efficacy. Field assays showed that the control efficacy of pyraclostrobin against rice false smut was greater than that of azoxystrobin. Pyraclostrobin had the best control of rice false smut in three rice varieties, with the control efficacy ranging from 81.5 to 95.5%, whereas azoxystrobin decreased the disease index by 64.1 to 69.2% under the same conditions. These results provide us a reference point in the management of U. virens and future QoI fungicide resistance monitoring programs.


Assuntos
Fungicidas Industriais , Oryza , Fungicidas Industriais/farmacologia , Oryza/microbiologia , Quinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...