Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Small ; : e2311509, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587968

RESUMO

Developing robust non-platinum electrocatalysts with multifunctional active sites for pH-universal hydrogen evolution reaction (HER) is crucial for scalable hydrogen production through electrochemical water splitting. Here ultra-small ruthenium-nickel alloy nanoparticles steadily anchored on reduced graphene oxide papers (Ru-Ni/rGOPs) as versatile electrocatalytic materials for acidic and alkaline HER are reported. These Ru-Ni alloy nanoparticles serve as pH self-adaptive electroactive species by making use of in situ surface reconstruction, where surface Ni atoms are hydroxylated to produce bifunctional active sites of Ru-Ni(OH)2 for alkaline HER, and selectively etched to form monometallic Ru active sites for acidic HER, respectively. Owing to the presence of Ru-Ni(OH)2 multi-site surface, which not only accelerates water dissociation to generate reactive hydrogen intermediates but also facilitates their recombination into hydrogen molecules, the self-supported Ru90Ni10/rGOP hybrid electrode only takes overpotential of as low as ≈106 mV to deliver current density of 1000 mA cm-2, and maintains exceptional stability for over 1000 h in 1 m KOH. While in 0.5 m H2SO4, the Ru90Ni10/rGOP hybrid electrode exhibits acidic HER catalytic behavior comparable to commercially available Pt/C catalyst due to the formation of monometallic Ru shell. These electrochemical behaviors outperform some of the best Ru-based catalysts and make it attractive alternative to Pt-based catalysts toward highly efficient HER.

2.
Adv Mater ; : e2403803, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598181

RESUMO

Aqueous zinc-ion batteries are attractive post-lithium battery technologies for grid-scale energy storage because of their inherent safety, low cost and high theoretical capacity. However, their practical implementation in wide-temperature surroundings persistently confronts irregular zinc electrodeposits and parasitic side reactions on metal anode, which leads to poor rechargeability, low Coulombic efficiency and short lifespan. Here, this work reports lamellar nanoporous Cu/Al2Cu heterostructure electrode as a promising anode host material to regulate high-efficiency and dendrite-free zinc electrodeposition and stripping for wide-temperatures aqueous zinc-ion batteries. In this unique electrode, the interconnective Cu/Al2Cu heterostructure ligaments not only facilitate fast electron transfer but work as highly zincophilic sites for zinc nucleation and deposition by virtue of local galvanic couples while the interpenetrative lamellar channels serving as mass transport pathways. As a result, it exhibits exceptional zinc plating/stripping behaviors in aqueous hybrid electrolyte of diethylene glycol dimethyl ether and zinc trifluoromethanesulfonate at wide temperatures ranging from 25 to -30 °C, with ultralow voltage polarizations at various current densities and ultralong lifespan of >4000 h. The outstanding electrochemical properties enlist full cell of zinc-ion batteries constructed with nanoporous Cu/Al2Cu and ZnxV2O5/C to maintain high capacity and excellent stability for >5000 cycles at 25 and -30 °C.

3.
Reprod Domest Anim ; 59(4): e14566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627959

RESUMO

Early pregnancy loss is a primary cause of low reproductive rates in dairy cows, posing severe economic losses to dairy farming. The accurate diagnosis of dairy cows with early pregnancy loss allows for oestrus synchronization, shortening day open, and increasing the overall conception rate of the herd. Several techniques are available for detecting early pregnancy loss in dairy cows, including rectal ultrasound, circulating blood progesterone, and pregnancy-associated glycoproteins (PAGs). Yet, there is a need to improve on existing techniques and develop novel strategies to identify cows with early pregnancy loss accurately. This manuscript reviews the applications of rectal ultrasound, circulating blood progesterone concentration, and PAGs in the diagnosis of pregnancy loss in dairy cows. The manuscript also discusses the recent progress of new technologies, including colour Doppler ultrasound (CDUS), interferon tau-induced genes (ISGs), and exosomal miRNA in diagnosing pregnancy loss in dairy cows. This study will provide an option for producers to re-breed cows with pregnancy loss, thereby reducing the calving interval and economic costs. Meanwhile, this manuscript might also act as a reference for exploring more economical and precise diagnostic technologies for early pregnancy loss in dairy cows.


Assuntos
Doenças dos Bovinos , Progesterona , Gravidez , Feminino , Bovinos , Animais , Aborto Animal/diagnóstico , Reprodução , Fertilização , Glicoproteínas , Inseminação Artificial/veterinária , Doenças dos Bovinos/diagnóstico
4.
Clin Radiol ; 79(6): e868-e877, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548547

RESUMO

AIM: Occurrence of anastomotic biliary stricture (AS) remains an essential issue following hepatobiliary surgeries, and percutaneous transhepatic cholangioscopy (PTCS) has great therapeutic significance in handling refractory AS for patients with altered gastrointestinal anatomy after cholangio-jejunostomy. This present study aimed to investigate feasibility of PTCS procedures in AS patients for therapeutic indications. MATERIALS AND METHODS: This study was a single-center, retrospective cohort study with a total number of 124 consecutive patients who received therapeutic PTCS due to AS. Clinical success rate, required number, and adverse events of therapeutic PTCS procedures as well as patients survival state were reviewed. RESULTS: These 124 patients previously underwent choledochojejunostomy or hepatico-jejunostomy, and there was post-surgical altered gastrointestinal anatomy. Overall, 366 therapeutic PTCS procedures were performed for these patients through applying rigid choledochoscope, and the median time of PTCS procedures was 3 (1-11). Among these patients, there were 34 cases (27.32%) accompanied by biliary strictures and 100 cases (80.65%) were also combined with biliary calculi. After therapeutic PTCS, most patients presented with relieved clinical manifestations and improved liver functions. The median time of follow-up was 26 months (2-86 months), and AS was successfully managed through PTCS procedures in 104 patients (83.87%). During the follow-up period, adverse events occurred in 81 cases (65.32%), most of which were tackled through supportive treatment. CONCLUSION: PTCS was a feasible, safe and effective therapeutic modality for refractory AS, which may be a promising alternative approach in clinical cases where the gastrointestinal anatomy was changed after cholangio-jejunostomy.


Assuntos
Anastomose Cirúrgica , Colestase , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Adulto , Constrição Patológica/cirurgia , Constrição Patológica/diagnóstico por imagem , Colestase/cirurgia , Colestase/diagnóstico por imagem , Colestase/etiologia , Anastomose Cirúrgica/efeitos adversos , Estudos de Viabilidade , Endoscopia do Sistema Digestório/métodos , Resultado do Tratamento , Complicações Pós-Operatórias/diagnóstico por imagem
5.
World J Oncol ; 15(1): 100-113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38274714

RESUMO

Background: The oncogene IGF2 mRNA binding protein 3 (IGF2BP3) could function as an m6A reader in stabilizing many tumor-associated genes' mRNAs. However, the relevant oncogenic mechanism by which IGF2BP3 promotes ovarian cancer growth is largely unknown. Methods: The IGF2BP3 expression in ovarian cancer was identified by retrieving the datasets from The Cancer Genome Atlas (TCGA). GEO datasets evaluated the relevant signaling pathways in IGF2BP3 knockdown in ovarian cancer cells. IGF2BP3 positive correlation gene in TCGA was calculated. MTS proliferation assay was identified in IGF2BP3 knockdown and rescued by PLAG1 like zinc finger 2 (PLAGL2) overexpression in ES-2 and SKOV3 cells. Bioinformatic analysis and RIP-qPCR were predicted and identified the IGF2BP3 binding site and PLAGL2 mRNA stability. The animal experiment identified IGF2BP3 proliferation inhibition. Results: IGF2BP3 was upregulated in ovarian cancer tissue and cells. The depletion of IGF2BP3 in ovarian cancer cells leads to an enhancement of the pathway involved in cellular proliferation and mRNA stability. IGF2BP3 positive correlation suppressed pro-proliferation gene PLAGL2. IGF2BP3 knockdown suppressed ovarian cancer cell proliferation and was rescued by PLAGL2 overexpression. Luciferase reporter assay confirmed that IGF2BP3 could bind to 3'-UTR of PLAGL2 to maintain the mRNA stability. Further, in in vivo experiments, IGF2BP3 knockdown suppressed ovarian cancer cell proliferation via inhibiting PLAGL2 expression. Conclusion: All of these indicate that PLAGL2 mediates the main function of IGF2BP3 knockdown on ovarian cancer proliferation inhibition through mRNA stability regulation.

6.
Angew Chem Int Ed Engl ; 63(1): e202315238, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37953400

RESUMO

Ambient electrochemical ammonia (NH3 ) synthesis is one promising alternative to the energy-intensive Haber-Bosch route. However, the industrial requirement for the electrochemical NH3 production with amperes current densities or gram-level NH3 yield remains a grand challenge. Herein, we report the high-rate NH3 production via NO2 - reduction using the Cu activated Co electrode in a bipolar membrane (BPM) assemble electrolyser, wherein BPM maintains the ion balance and the liquid level of electrolyte. Benefited from the abundant Co sites and optimal structure, the target modified Co foam electrode delivers a current density of 2.64 A cm-2 with the Faradaic efficiency of 96.45 % and the high NH3 yield rate of 279.44 mg h-1 cm-2 in H-type cell using alkaline electrolyte. Combined with in situ experiments and theoretical calculations, we found that Cu optimizes the adsorption behavior of NO2 - and facilitates the hydrogenation steps on Co sites toward a rapid NO2 - reduction process. Importantly, this activated Co electrode affords a large NH3 production up to 4.11 g h-1 in a homemade reactor, highlighting its large-scale practical feasibility.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37944962

RESUMO

Objective: The present study aimed to explore the predictive value and prognosis of SYNTAX score, nerve growth factor (NGF), trimethylamino oxide (TMAO), silent information regulator 1 (SIRT1), and apolipoprotein A1 (apoA1) for ischemic heart failure (IHF) patients. Methods: From January 2020 to January 2021, 87 patients diagnosed with IHF in the Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, and 42 healthy people were included and analyzed retrospectively. The 87 patients were divided into 3 subgroups according to New York Heart Association (NYHA) heart function classification, as group 1 (n=9, classes I-II heart function), group 2 (n = 7, class III heart function), and group 3 (n = 31, class IV heart function). The levels of left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), left atrium diameter (LAD), NGF, TMAO, SIRT1, SYNTAX score, and apoA1 were compared among these groups. Results: The SIRT1 and apoA1 of patients with classes I-II, III, and IV heart function were significantly lower than that of healthy people in the control group, while TMAO and NGF were significantly higher than those of healthy people (all P < .05). The SYNTAX score of grade I-II, grade III, and grade IV groups was significantly lower than that of the healthy group (P < .05). The two groups had no significant difference in the number of coronary artery lesions (P > .05). The SIRT1 and apoA1 of patients with classes III and IV heart function were significantly lower than that of patients with classes I -II heart function, while TMAO and NGF were significantly higher than those of class I-II people (all P < .05). The SIRT1 and apoA1 of patients with class IV heart function were significantly lower than those of patients with class III heart function, while TMAO and NGF were significantly higher than those of patients with class III heart function (all P < .05). After 1 year follow-up of these IHF patients, 22 patients were readmission because of cardiac events, and 6 patients died in hospital or during follow-up. These 28 patients were allocated to the event group, while the rest 59 patients were allocated to the events-free group. The SIRT1 and apoA1 level in event group was significantly lower than those of event-free group, while the TMAO, SYNTAX score, and NGF level were significantly higher than those of the event-free group (all P < .001). Baseline characters and heart function with significant differences (LVEF, LAD and LVEDD) among these groups, and NGF, TMAO, SIRT1, SYNTAX score and apoA1 were enrolled into Logistic regression. SYNTAX score, NGF, TMAO, SIRT1 and apoA1 were independent risk factors for the prognosis of IHF patients (all P < .05). Conclusion: SIRT1, apoA1, TMAO and NGF serum levels in patients with IHF are abnormally expressed and closely related to cardiac function. The levels of SYNTAX score, NGF, TMAO, SIRT1, and apoA can effectively predict adverse events in patients with IHF.

8.
Food Chem ; 429: 136831, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480778

RESUMO

The effects of enzymatic deamidation by protein-glutaminase (PG) on the texture, rheology, microstructure, and sensory properties of skimmed set-type yoghurt were studied. The proportion of small-particle size milk protein micelles (10-50 nm) increased significantly from 0 to 99.39% after PG deamidation. Cryo-SEM results revealed that PG-treated yoghurt had a denser and less open 3D structure. PG was effective at inhibiting post-acidification during storage at 4 ℃. The water holding capacity of PG-treated yoghurt (0.12 U·mL-1) increased by more than 15%. The fluidity and viscosity of yoghurt were significantly improved with increasing PG dose. Sensory evaluation revealed that PG (0.06 U·mL-1) significantly improved the smoothness and creaminess of skimmed set-type yoghurt, which corresponded to the pastiness in texture. In summary, PG can effectively address the problems of post-acidification, gel fracture, and flavors change in skimmed set-type yoghurt, providing new applications for PG in the food industry.


Assuntos
Glutaminase , Iogurte , Proteínas do Leite , Reologia , Micelas
9.
Adv Mater ; 35(41): e2303455, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37363875

RESUMO

Ammonia (NH3 ) is essential for modern agriculture and industry, and, due to its high hydrogen density and no carbon emission, it is also expected to be the next-generation of "clean" energy carrier. Herein, directly from air and water, a plasma-electrocatalytic reaction system for NH3 production, which combines two steps of plasma-air-to-NOx - and electrochemical NOx - reduction reaction (eNOx RR) with a bifunctional catalyst, is successfully established. Especially, the bifunctional catalyst of CuCo2 O4 /Ni can simultaneously promote plasma-air-to-NOx - and eNOx RR processes. The easy adsorption and activation of O2 by CuCo2 O4 /Ni greatly improve the NOx - production rate at the first step. Further, CuCo2 O4 /Ni can also resolve the overbonding of the key intermediate of * NO, and thus reduce the energy barrier of the second step of eNOx RR. Finally, the "green" NH3 production achieves excellent FENH3 (96.8%) and record-high NH3 yield rate of 145.8 mg h-1  cm-2 with large partial current density (1384.7 mA cm-2 ). Moreover, an enlarged self-made H-type electrolyzer improves the NH3 yield to 3.6 g h-1 , and the obtained NH3 is then rapidly converted to a solid of magnesium ammonium phosphate hexahydrate, which favors the easy storage and transportation of NH3 .

10.
Int Immunopharmacol ; 119: 110253, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37156030

RESUMO

BACKGROUND: This study aimed to evaluate the efficacy of exosomes (EXO) derived from TGF-ß1-pretreated mesenchymal stem cells (MSCs) on biliary ischemia reperfusion injury (IRI) and further reveal the possible mechanisms. METHODS: Bone marrow-derived MSCs were treated with exogenous TGF-ß1, Jagged1/Notch1/SOX9 pathway inhibitor LY450139, or their combination. Then, EXO were isolated from the culture supernatants and further characterized. After establishing IRI model of biliary epithelial cells (EpiCs), EXO derived from differently-treated MSCs were applied to detect their protective effects on EpiCs, and LY450139 was applied in EpiCs to detect the possible mechanisms after treatment with MSCs-EXO. EXO derived from differently-treated MSCs were further injected into the hepatic artery immediately after establishment of intrahepatic biliary IRI for animal studies. RESULTS: Pretreatment with TGF-ß1 significantly enhanced MSCs-EXO production and elevated the levels of massive miRNAs associated with anti-apoptosis and tissue repair, which were evidently decreased after TGF-ß1 plus LY450139 cotreatment. Notable improvement was observed in EpiCs after MSCs-EXO treatment, evidenced by reduced cellular apoptosis, increased cellular proliferation and declined oxidative stress, which were more evident in EpiCs that were treated with EXO derived from TGF-ß1-pretreated MSCs. However, application of EXO derived from TGF-ß1 plus LY450139-cotreated MSCs reversely enhanced cellular apoptosis, decreased cellular proliferation and anti-oxidants production. Interestingly, LY450139 application in EpiCs after treatment with MSCs-EXO also reversed the declined cellular apoptosis and enhanced oxidative stress induced by TGF-ß1 pretreatment. In animal studies, administration of EXO derived from TGF-ß1-pretreated MSCs more effectively attenuated biliary IRI through reducing oxidative stress, apoptosis, inflammation and enhancing the expression levels of TGF-ß1 and Jagged1/Notch1/SOX9 pathway-related markers, which were reversed after administration of EXO derived from TGF-ß1 plus LY450139-cotreated MSCs. CONCLUSION: Our results provided a vital insight that TGF-ß1 pretreatment endowed MSCs-EXO with stronger protective effects to improve biliary IRI via Jagged1/Notch1/SOX9 pathway.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Animais , Exossomos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Apoptose , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/metabolismo
11.
Nat Commun ; 14(1): 2319, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087491

RESUMO

Potassium oxide (K2O) is used as a promotor in industrial ammonia synthesis, although metallic potassium (K) is better in theory. The reason K2O is used is because metallic K, which volatilizes around 400 °C, separates from the catalyst in the harsh ammonia synthesis conditions of the Haber-Bosch process. To maximize the efficiency of ammonia synthesis, using metallic K with low temperature reaction below 400 °C is prerequisite. Here, we synthesize ammonia using metallic K and Fe as a catalyst via mechanochemical process near ambient conditions (45 °C, 1 bar). The final ammonia concentration reaches as high as 94.5 vol%, which was extraordinarily higher than that of the Haber-Bosch process (25.0 vol%, 450 °C, 200 bar) and our previous work (82.5 vol%, 45 °C, 1 bar).

12.
Front Physiol ; 14: 1056905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969587

RESUMO

Exosomes are a kind of extracellular vesicles that are produced and secreted by different mammalian cells. They serve as cargo proteins and can transfer different kinds of biomolecules, including proteins, lipids, and nucleic acids, which consequently act on target cells to exert different biological effects. Recent years have witnessed a significant increase in the number of studies on exosomes due to the potential effects of exosomes in the diagnosis and treatment of cancers, neurodegenerative diseases, and immune disorders. Previous studies have demonstrated that exosomal contents, especially miRNAs, are implicated in numerous physiological processes such as reproduction, and are crucial regulators of mammalian reproduction and pregnancy-related diseases. Here, we describe the origin, composition, and intercellular communication of exosomes, and discuss their functions in follicular development, early embryonic development, embryonic implantation, male reproduction and development of pregnancy-related diseases in humans and animals. We believe this study will provide a foundation for revealing the mechanism of exosomes in regulating mammalian reproduction, and providing new approaches and ideas for the diagnosis and treatment of pregnancy-related diseases.

13.
Nat Commun ; 14(1): 1811, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002220

RESUMO

Developing robust nonprecious-metal electrocatalysts with high activity towards sluggish oxygen-evolution reaction is paramount for large-scale hydrogen production via electrochemical water splitting. Here we report that self-supported laminate composite electrodes composed of alternating nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride (FeCo/CeO2-xNx) heterolamellas hold great promise as highly efficient electrocatalysts for alkaline oxygen-evolution reaction. By virtue of three-dimensional nanoporous architecture to offer abundant and accessible electroactive CoFeOOH/CeO2-xNx heterostructure interfaces through facilitating electron transfer and mass transport, nanoporous FeCo/CeO2-xNx composite electrodes exhibit superior oxygen-evolution electrocatalysis in 1 M KOH, with ultralow Tafel slope of ~33 mV dec-1. At overpotential of as low as 360 mV, they reach >3900 mA cm-2 and retain exceptional stability at ~1900 mA cm-2 for >1000 h, outperforming commercial RuO2 and some representative oxygen-evolution-reaction catalysts recently reported. These electrochemical properties make them attractive candidates as oxygen-evolution-reaction electrocatalysts in electrolysis of water for large-scale hydrogen generation.

14.
J Gastrointest Oncol ; 14(1): 128-145, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915453

RESUMO

Background: This study analyzed both the influencing factors of malnutrition in patients with gastric cancer and established a multi-dimensional risk model to predict postoperative malnutrition three months after surgery. Methods: The clinical data of gastric cancer patients hospitalized for the first time and receiving laparoscopic surgery in the general surgery department of our hospital were retrospectively analyzed through the hospital information system and divided into a training set and a validation set in the ratio of 7:3. Nutritional status was assessed using the Patient Generated Subjective Global Assessment scale and follow-up records three months after surgery. Patients were divided into a non-malnutrition group and a malnutrition group, and a risk prediction model was established and displayed in the form of a nomogram. Results: A total of 344 patients were included, with 242 in the training and 102 in the validation set. Tumor node metastasis stage (TNM Stage, P=0.020), cardiac function grading (CFG, P=0.013), prealbumin (PAB, P<0.001), neutrophil-to-lymphocyte ratio (NLR, P=0.027), and enteral nutrition within 48 hours post-operation (EN 48 h post-op, P=0.025) were independent risk factors. We established a prediction model with the above variables and displayed it via a nomogram, then verified its effectiveness through internal and external verification. This revealed a C-index of 0.84 (95% CI: 0.79-0.89), and the area under curve (AUC) areas of 0.840 (training set) and 0.854 (validation set), which was better than the nutritional risk screening 2002 (NRS2002) scale. The calibration curve brier scores were 0.159 and 0.195, and the Hosmer-Lemeshow test chi-square values were 14.070 and 1.989 (P>0.05). The decision curve analysis (DCA) of the training set model indicated the clinical applicability was good and within the threshold probability range of 10%-85%, which was also better than NRS2002. Conclusions: A clinical prediction model including multi-dimensional variables was established based on independent risk factors of malnutrition three months after gastrectomy in patients with gastric cancer. The model yields greater prediction accuracy of the risk of three-month-postoperative malnutrition in patients with gastric cancer, helps screen high-risk patients, formulates targeted nutritional prescriptions early, and improves the overall prognosis of patients.

15.
Sci Rep ; 12(1): 18042, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302818

RESUMO

Modern money transfer services are convenient, attracting fraudulent actors to run scams in which victims are deceived into transferring funds to fraudulent accounts. Machine learning models are broadly applied due to the poor fraud detection performance of traditional rule-based approaches. Learning directly from raw transaction data is impractical due to its high-dimensional nature; most studies construct features instead by extracting patterns from raw transaction data. Past literature categorizes these features into recency, frequency, monetary, and anomaly detection features. We use various machine learning algorithms to examine the performance of features in these four categories with real transaction data; we compare them with the performance of our feature generation guideline based on the statistical perspectives and characteristics of (non)-fraudulent accounts. The results show that except for the monetary category, other feature categories used in the literature perform poorly regardless of which machine learning algorithm is used; anomaly detection features perform the worst. We find that even statistical features generated based on financial knowledge yield limited performance on a real transaction dataset. Our atypical detection characteristic of normal accounts improves the ability to distinguish them from fraudulent accounts and hence improves the overall detection results, outperforming other existent methods.


Assuntos
Administração Financeira , Fraude , Aprendizado de Máquina , Algoritmos , Eletrônica
16.
World J Clin Cases ; 10(27): 9743-9749, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36186195

RESUMO

BACKGROUND: The prognosis of intrahepatic cholangiocarcinoma (ICC) with lymph node metastasis is poor. The feasibility of surgery is not certain, which is a contraindication according to the National Comprehensive Cancer Network guidelines. The role of immunotherapy as a neoadjuvant therapy for ICC is not clear. We herein describe a case of ICC with lymph node metastasis that was successfully treated with neoadjuvant therapy. CASE SUMMARY: A 60-year-old man with a liver tumor was admitted to our hospital. Enhanced computed tomography and magnetic resonance imaging revealed a space-occupying lesion in the right lobe of the liver. Multiple subfoci were found around the tumor, and the right posterior branch of the portal vein was invaded. Liver biopsy indicated poorly differentiated cholangiocytes. According to the American Joint Committee on Cancer disease stage classification, ICC with hilar lymph node metastasis (stage IIIB) and para-aortic lymph node metastasis was suspected. A report showed that two patients with stage IIIB ICC achieved a complete response (CR) 13 mo and 16 mo after chemotherapy with a PD-1 monoclonal antibody. After multidisciplinary consultation, the patient was given neoadjuvant therapy, surgical resection and lymph node dissection, and postoperative adjuvant therapy. After three rounds of PD-1 immunotherapy (camrelizumab) and two rounds of gemcitabine combined with cisplatin regimen chemotherapy, the tumor size was reduced. Therefore, a partial response was achieved. Exploratory laparotomy found that the lymph nodes of Group 16 were negative, and the tumor could be surgically removed. Therefore, the patient underwent right hemihepatectomy plus lymph node dissection. The patient received six rounds of chemotherapy and five rounds of PD-1 treatment postoperatively. After 8 mo of follow-up, no recurrence was found, and a CR was achieved. CONCLUSION: Neoadjuvant therapy combined with surgical resection is useful for advanced-stage ICC. This is the first report of successful treatment of stage IIIB ICC using neoadjuvant therapy with a PD-1 inhibitor.

17.
Front Microbiol ; 13: 969445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016794

RESUMO

Protein-glutaminase (PG), a deamidation enzyme commercially derived from Chryseobacterium proteolyticum, is used to improve the solubility and other functional properties of food proteins. In this study, a new PG-producing strain, Chryseobacterium cucumeris ZYF120413-7, was isolated from soil, and it had a high PG yield and a short culture time. It gave the maximum PG activity with 0.557 U/ml on Cbz-Gln-Gly after 12 h of culture, indicating that it was more suitable for PG production. The enzyme activity recovery and purification fold were 32.95% and 161.95-fold, respectively, with a specific activity of 27.37 U/mg. The PG was a pre-pro-protein with a 16 amino acids putative signal peptide, a pro-PG of 118 amino acids, and a mature PG of 185 amino acids. The amino acid sequence identity of PG from strain ZYF120413-7 was 74 and 45%, respectively, to that of PG from C. proteolyticum 9670T and BH-PG. The optimum reaction pH and temperature of PG was 6 and 60°C, respectively. Enzyme activity was inhibited by Cu2+. The optimum PG substrate was Cbz-Gln-Gly, and the Km and Vmax values were 1.68 mM and 1.41 µM mg protein-1 min-1, respectively. Degree of deamidation (DD) of soy protein isolate (SPI) treated by purified PG was 40.75% within the first 2 h and 52.35% after 18 h. These results demonstrated that the PG from C. cucumeris ZYF120413-7 was a promising protein-deamidating enzyme for improving the functionality of food proteins.

18.
Nanomicro Lett ; 14(1): 128, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699828

RESUMO

Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.

19.
Bioresour Technol ; 359: 127477, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714778

RESUMO

It is important to solve the problems of biomass treatment and combined contaminants removal in environmental remediation. In this study, a calcium (Ca) modified biochar (CaBC800) was fabricated using corn stover (CS) as a raw material to remove phosphate and tetracycline (TC). The experimental results indicate that CaBC800 can adsorb both inorganic phosphate and organic TC. The entire adsorption process corresponds to pseudo-second-order kinetics and Langmuir adsorption isotherm. The maximum adsorption capacities of phosphate and TC were 33.944 and 33.534 mg/g, respectively. The phosphate adsorption was demonstrated to mainly depend on the chemical precipitation by Ca2+ and ligand exchange by hydroxyl groups from CaBC800. Meanwhile, hydrogen bonding from oxygen functional groups and π-π interactions from aromatic rings are the main adsorption mechanisms of TC. This study provides a new adsorbent to efficiently remove phosphate and TC, and the simultaneous adsorption indicates the application potential of CaBC800 in wastewater remediation.


Assuntos
Fosfatos , Poluentes Químicos da Água , Adsorção , Antibacterianos , Cálcio , Carvão Vegetal , Cinética , Tetraciclina , Poluentes Químicos da Água/análise , Zea mays
20.
Leuk Lymphoma ; 63(9): 2063-2073, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35503708

RESUMO

This open-label, multicenter, single-arm, phase 2 study assessed the safety and efficacy of blinatumomab consolidation therapy in adult patients with newly diagnosed, high-risk diffuse large B-cell lymphoma (DLBCL; International Prognostic Index 3-5 and/or double-/triple-hit or double MYC/BCL-2 expressors) who achieved complete response (CR), partial response (PR), or stable disease (SD) following run-in with 6 cycles of R-chemotherapy (NCT03023878). Of the 47 patients enrolled, 28 received blinatumomab. Five patients (17.9%) experienced grade 4 treatment-emergent adverse events of interest (neutropenia, n = 4; infection, n = 1). Two deaths reported at the end of the study were unrelated to treatment with blinatumomab (disease progression, n = 1; infection, n = 1). 3/4 patients with PR and 4/4 patients with SD after R-chemotherapy achieved CR following blinatumomab. Consolidation with blinatumomab in patients with newly diagnosed, high-risk DLBCL who did not progress under R-chemotherapy was better tolerated than in previous studies where blinatumomab was used for treatment of patients with lymphoma.


Assuntos
Anticorpos Biespecíficos , Linfoma Difuso de Grandes Células B , Adulto , Anticorpos Biespecíficos/efeitos adversos , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Indução de Remissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...